enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Angstrom - Wikipedia

    en.wikipedia.org/wiki/Angstrom

    The angstrom is often used in the natural sciences and technology to express sizes of atoms, molecules, microscopic biological structures, and lengths of chemical bonds, arrangement of atoms in crystals, [12] wavelengths of electromagnetic radiation, and dimensions of integrated circuit parts.

  3. Bond length - Wikipedia

    en.wikipedia.org/wiki/Bond_length

    It is generally considered the average length for a carbon–carbon single bond, but is also the largest bond length that exists for ordinary carbon covalent bonds. Since one atomic unit of length (i.e., a Bohr radius) is 52.9177 pm, the C–C bond length is 2.91 atomic units, or approximately three Bohr radii long.

  4. Carbon–fluorine bond - Wikipedia

    en.wikipedia.org/wiki/Carbon–fluorine_bond

    Carbon–fluorine bonds can have a bond dissociation energy (BDE) of up to 130 kcal/mol. [2] The BDE (strength of the bond) of C–F is higher than other carbon–halogen and carbon–hydrogen bonds. For example, the BDEs of the C–X bond within a CH 3 –X molecule is 115, 104.9, 83.7, 72.1, and 57.6 kcal/mol for X = fluorine, hydrogen ...

  5. Covalent radius - Wikipedia

    en.wikipedia.org/wiki/Covalent_radius

    The covalent radius, r cov, is a measure of the size of an atom that forms part of one covalent bond. It is usually measured either in picometres (pm) or angstroms (Å), with 1 Å = 100 pm. In principle, the sum of the two covalent radii should equal the covalent bond length between two atoms, R(AB) = r(A) + r(B).

  6. Atomic spacing - Wikipedia

    en.wikipedia.org/wiki/Atomic_spacing

    Atomic spacing refers to the distance between the nuclei of atoms in a material. This space is extremely large compared to the size of the atomic nucleus, and is related to the chemical bonds which bind atoms together. [1] In solid materials, the atomic spacing is described by the bond lengths of its atoms.

  7. Ionic radius - Wikipedia

    en.wikipedia.org/wiki/Ionic_radius

    That is, the distance between two neighboring iodides in the crystal is assumed to be twice the radius of the iodide ion, which was deduced to be 214 pm. This value can be used to determine other radii. For example, the inter-ionic distance in RbI is 356 pm, giving 142 pm for the ionic radius of Rb +. In this way values for the radii of 8 ions ...

  8. Carbon–nitrogen bond - Wikipedia

    en.wikipedia.org/wiki/Carbon–nitrogen_bond

    Similar to carbon–carbon bonds, these bonds can form stable double bonds, as in imines; and triple bonds, such as nitriles. Bond lengths range from 147.9 pm for simple amines to 147.5 pm for C-N= compounds such as nitromethane to 135.2 pm for partial double bonds in pyridine to 115.8 pm for triple bonds as in nitriles. [2]

  9. Hydrogen bond - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_bond

    The X−H distance is typically ≈110 pm, whereas the H···Y distance is ≈160 to 200 pm. The typical length of a hydrogen bond in water is 197 pm. The ideal bond angle depends on the nature of the hydrogen bond donor.