enow.com Web Search

  1. Ad

    related to: matrix calculus handbook

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.

  3. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    Vectorization is used in matrix calculus and its applications in establishing e.g., moments of random vectors and matrices, asymptotics, as well as Jacobian and Hessian matrices. [5] It is also used in local sensitivity and statistical diagnostics.

  4. Mueller calculus - Wikipedia

    en.wikipedia.org/wiki/Mueller_calculus

    Mueller calculus is a matrix method for manipulating Stokes vectors, which represent the polarization of light. It was developed in 1943 by Hans Mueller . In this technique, the effect of a particular optical element is represented by a Mueller matrix—a 4×4 matrix that is an overlapping generalization of the Jones matrix .

  5. Eigenvalue perturbation - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_perturbation

    In classical mechanics, generalized eigenvalues may crop up when we look for vibrations of multiple degrees of freedom systems close to equilibrium; the kinetic energy provides the mass matrix , the potential strain energy provides the rigidity matrix .

  6. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [1]If A is a differentiable map from the real numbers to n × n matrices, then

  7. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  8. Sylvester's formula - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_formula

    In matrix theory, Sylvester's formula or Sylvester's matrix theorem (named after J. J. Sylvester) or Lagrange−Sylvester interpolation expresses an analytic function f(A) of a matrix A as a polynomial in A, in terms of the eigenvalues and eigenvectors of A. [1] [2] It states that [3]

  9. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    The determinant of the Hessian matrix is a covariant; see Invariant of a binary form; Polarization identity, useful for rapid calculations involving Hessians. Jacobian matrix Matrix of all first-order partial derivatives of a vector-valued function; Hessian equation

  1. Ad

    related to: matrix calculus handbook