enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b ⁡ a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .

  3. 3D projection - Wikipedia

    en.wikipedia.org/wiki/3D_projection

    These projections rely on visual perspective and aspect analysis to project a complex object for viewing capability on a simpler plane. 3D projections use the primary qualities of an object's basic shape to create a map of points, that are then connected to one another to create a visual element. The result is a graphic that contains conceptual ...

  4. Plane-based geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Plane-based_geometric_algebra

    Elements of 3D Plane-based GA, which includes planes, lines, and points. All elements are constructed from reflections in planes. Lines are a special case of rotations. Plane-based geometric algebra is an application of Clifford algebra to modelling planes, lines, points, and rigid transformations.

  5. Projection (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Projection_(linear_algebra)

    A square matrix is called a projection matrix if it is equal to its square, i.e. if =. [2]: p. 38 A square matrix is called an orthogonal projection matrix if = = for a real matrix, and respectively = = for a complex matrix, where denotes the transpose of and denotes the adjoint or Hermitian transpose of .

  6. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    Another type of transformation, of importance in 3D computer graphics, is the perspective projection. Whereas parallel projections are used to project points onto the image plane along parallel lines, the perspective projection projects points onto the image plane along lines that emanate from a single point, called the center of projection.

  7. Projection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Projection_(mathematics)

    In mathematics, a projection is an idempotent mapping of a set (or other mathematical structure) into a subset (or sub-structure). In this case, idempotent means that projecting twice is the same as projecting once. The restriction to a subspace of a projection is also called a projection, even if the idempotence property is lost. An everyday ...

  8. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    Many ideas of dimension can be tested with finite geometry. The simplest instance is PG(3,2), which has Fano planes as its 2-dimensional subspaces. It is an instance of Galois geometry, a study of projective geometry using finite fields. Thus, for any Galois field GF(q), there is a projective space PG(3,q) of three dimensions.

  9. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used. It is often called the inner product (or rarely the projection product) of Euclidean space, even though it is not the only inner product that can be defined on Euclidean space (see Inner product space for more).