Search results
Results from the WOW.Com Content Network
Most importantly, the maximum lift-to-drag ratio is independent of the weight of the aircraft, the area of the wing, or the wing loading. It can be shown that two main drivers of maximum lift-to-drag ratio for a fixed wing aircraft are wingspan and total wetted area. One method for estimating the zero-lift drag coefficient of an aircraft is the ...
The power is equal to the drag force times velocity. For aircraft in cruise flight the lift is equal to the weight (L=mg) and the engine thrust is equal to the drag (T=D). Hence, ϵ = P / ( m g v ) = D / L = 1 / f {\displaystyle \epsilon =P/(mgv)=D/L=1/f} , with f=L/D the lift-to-drag ratio , so the specific resistance of airplanes is roughly ...
The drag curve or drag polar is the relationship between the drag on an aircraft and other variables, such as lift, the coefficient of lift, angle-of-attack or speed. It may be described by an equation or displayed as a graph (sometimes called a "polar plot"). [ 1 ]
The logarithmic term with weight ratios is replaced by the direct ratio between / = where is the energy per mass of the battery (e.g. 150-200 Wh/kg for Li-ion batteries), the total efficiency (typically 0.7-0.8 for batteries, motor, gearbox and propeller), / lift over drag (typically around 18), and the weight ratio / typically around 0.3.
The lift-to-drag ratio, or L/D ratio, is the amount of lift generated by a wing or vehicle, divided by the drag it creates by moving through the air. A higher or more favourable L/D ratio is typically one of the major goals in aircraft design; since a particular aircraft's needed lift is set by its weight, delivering that lift with lower drag ...
An ASH 31 glider with very high aspect ratio (AR=33.5) and lift-to-drag ratio (L/D=56) In aeronautics, the aspect ratio of a wing is the ratio of its span to its mean chord. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. [1]
3 Supersonic/hypersonic lift to drag ratios. 2 comments. 4 Wind tunnel. 2 comments. 5 How do we edit the templates used in the Examples section. 2 comments. 6 L/D for ...
The thrust-to-weight ratio and lift-to-drag ratio are the two most important parameters in determining the performance of an aircraft. The thrust-to-weight ratio varies continually during a flight. Thrust varies with throttle setting, airspeed, altitude, air temperature, etc. Weight varies with fuel burn and payload changes.