Ads
related to: geometry practice
Search results
Results from the WOW.Com Content Network
Topology is the field concerned with the properties of continuous mappings, [101] and can be considered a generalization of Euclidean geometry. [102] In practice, topology often means dealing with large-scale properties of spaces, such as connectedness and compactness. [49]
Absolute geometry is a geometry based on an axiom system consisting of all the axioms giving Euclidean geometry except for the parallel postulate or any of its alternatives. [69] The term was introduced by János Bolyai in 1832. [70] It is sometimes referred to as neutral geometry, [71] as it is neutral with respect to the parallel postulate.
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems.Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.
In the late 1990s, plane-based geometric algebra and conformal geometric algebra (CGA) respectively provided a framework for euclidean geometry and classical geometries. [2] In practice, these and several derived operations allow a correspondence of elements, subspaces and operations of the algebra with geometric interpretations.
In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry . Analytic geometry is used in physics and engineering , and also in aviation , rocketry , space science , and spaceflight .
Ads
related to: geometry practice