Search results
Results from the WOW.Com Content Network
In robot kinematics, forward kinematics refers to the use of the kinematic equations of a robot to compute the position of the end-effector from specified values for the joint parameters. [ 1 ] The kinematics equations of the robot are used in robotics , computer games , and animation .
Forward kinematics uses the kinematic equations of a robot to compute the position of the end-effector from specified values for the joint parameters. [3] The reverse process that computes the joint parameters that achieve a specified position of the end-effector is known as inverse kinematics.
classical arm-type robotics: kinematics, dynamics, and trajectory generation. The Toolbox uses a very general method of representing the kinematics and dynamics of serial-link manipulators using Denavit-Hartenberg parameters or modified Denavit-Hartenberg parameters. These parameters are encapsulated in MATLAB objects.
Direct kinematics or forward kinematics refers to the calculation of end effector position, orientation, velocity, and acceleration when the corresponding joint values are known. Inverse kinematics refers to the opposite case in which required joint values are calculated for given end effector values, as done in path planning.
Parallel robots are usually more limited in the workspace; for instance, they generally cannot reach around obstacles. The calculations involved in performing a desired manipulation (forward kinematics) are also usually more difficult and can lead to multiple solutions. Prototype of "PAR4", a 4-degree-of-freedom, high-speed, parallel robot.
A model of the human skeleton as a kinematic chain allows positioning using forward and inverse kinematics. In mechanical engineering , a kinematic chain is an assembly of rigid bodies connected by joints to provide constrained motion that is the mathematical model for a mechanical system . [ 1 ]
Forward vs. inverse kinematics. In computer animation and robotics, inverse kinematics is the mathematical process of calculating the variable joint parameters needed to place the end of a kinematic chain, such as a robot manipulator or animation character's skeleton, in a given position and orientation relative to the start of the chain.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us