Ads
related to: fractional calculus applications problems
Search results
Results from the WOW.Com Content Network
Fractional calculus was introduced in one of Niels Henrik Abel's early papers [3] where all the elements can be found: the idea of fractional-order integration and differentiation, the mutually inverse relationship between them, the understanding that fractional-order differentiation and integration can be considered as the same generalized ...
The primary concept behind fractional calculus of sets is the characterization of fractional calculus elements using sets due to the plethora of fractional operators available. [3] [4] [5] This methodology originated from the development of the Fractional Newton-Raphson method [6] and subsequent related works. [7] [8] [9] [10]
In fractional calculus, these formulae can be used to construct a differintegral, allowing one to differentiate or integrate a fractional number of times. Differentiating a fractional number of times can be accomplished by fractional integration, then differentiating the result.
An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley. ISBN 0-471-58884-9. Oldham, Keith B.; Spanier, Jerome (1974). The Fractional Calculus; Theory and Applications of Differentiation and Integration to Arbitrary Order. Mathematics in Science and Engineering. Vol. V. Academic Press. ISBN 0-12-525550-0.
If the differ integral is initialized properly, then the hoped-for composition law holds. The problem is that in differentiation, information is lost, as with C in the first equation. However, in fractional calculus, given that the operator has been fractionalized and is thus continuous, an entire complementary function is needed.
In mathematics, the Riemann–Liouville integral associates with a real function: another function I α f of the same kind for each value of the parameter α > 0.The integral is a manner of generalization of the repeated antiderivative of f in the sense that for positive integer values of α, I α f is an iterated antiderivative of f of order α.
By applying a Laplace transform to the LTI system above, the transfer function becomes = () = = =For general orders and this is a non-rational transfer function. Non-rational transfer functions cannot be written as an expansion in a finite number of terms (e.g., a binomial expansion would have an infinite number of terms) and in this sense fractional orders systems can be said to have the ...
Fractional Calculus. An Introduction for Physicists, by Richard Herrmann [17] Fractional Calculus of Variations in Terms of a Generalized Fractional Integral with Applications to Physics, Tatiana Odzijewicz, Agnieszka B. Malinowska and Delfim F. M. Torres, Abstract and Applied Analysis, Vol 2012 (2012), Article ID 871912, 24 pages [18]
Ads
related to: fractional calculus applications problems