Ads
related to: calculus telescoping serieseducator.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
In mathematics, a telescoping series is a series whose general term is of the form = +, i.e ... Fundamental theorem of calculus, a continuous analog of telescoping ...
In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. [1] The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions.
If r < 1, then the series converges absolutely. If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
Because it is a divergent series, it should be interpreted as a formal sum, an abstract mathematical expression combining the unit fractions, rather than as something that can be evaluated to a numeric value. There are many different proofs of the divergence of the harmonic series, surveyed in a 2006 paper by S. J. Kifowit and T. A. Stamps. [13]
A particular case of Dirichlet's test is the more commonly used alternating series test for the case [2] [5] = | = | Another corollary is that ∑ n = 1 ∞ a n sin n {\textstyle \sum _{n=1}^{\infty }a_{n}\sin n} converges whenever ( a n ) {\displaystyle (a_{n})} is a decreasing sequence that tends to zero.
The more general class of p-series, =, exemplifies the possible results of the test: If p ≤ 0, then the nth-term test identifies the series as divergent. If 0 < p ≤ 1, then the nth-term test is inconclusive, but the series is divergent by the integral test for convergence.
In mathematical analysis, the alternating series test is the method used to show that an alternating series is convergent when its terms (1) ... Calculus (4th ed ...
Ads
related to: calculus telescoping serieseducator.com has been visited by 10K+ users in the past month