enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    If the concentration of a reactant remains constant (because it is a catalyst, or because it is in great excess with respect to the other reactants), its concentration can be included in the rate constant, leading to a pseudo–first-order (or occasionally pseudo–second-order) rate equation. For a typical second-order reaction with rate ...

  3. Rate-determining step - Wikipedia

    en.wikipedia.org/wiki/Rate-determining_step

    In fact, however, the observed reaction rate is second-order in NO 2 and zero-order in CO, [5] with rate equation r = k[NO 2] 2. This suggests that the rate is determined by a step in which two NO 2 molecules react, with the CO molecule entering at another, faster, step. A possible mechanism in two elementary steps that explains the rate ...

  4. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    For this reason, the Euler method is said to be a first-order method, while the midpoint method is second order. We can extrapolate from the above table that the step size needed to get an answer that is correct to three decimal places is approximately 0.00001, meaning that we need 400,000 steps.

  5. Thiele modulus - Wikipedia

    en.wikipedia.org/wiki/Thiele_modulus

    Then the Thiele modulus for a first order reaction is: = From this relation it is evident that with large values of , the rate term dominates and the reaction is fast, while slow diffusion limits the overall rate. Smaller values of the Thiele modulus represent slow reactions with fast diffusion.

  6. Order of accuracy - Wikipedia

    en.wikipedia.org/wiki/Order_of_accuracy

    Consider , the exact solution to a differential equation in an appropriate normed space (, | | | |). Consider a numerical approximation u h {\displaystyle u_{h}} , where h {\displaystyle h} is a parameter characterizing the approximation, such as the step size in a finite difference scheme or the diameter of the cells in a finite element method .

  7. SN1 reaction - Wikipedia

    en.wikipedia.org/wiki/SN1_reaction

    The Hughes-Ingold symbol of the mechanism expresses two properties—"S N" stands for "nucleophilic substitution", and the "1" says that the rate-determining step is unimolecular. [1] [2] Thus, the rate equation is often shown as having first-order dependence on the substrate and zero-order dependence on the nucleophile. This relationship holds ...

  8. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...

  9. Molecularity - Wikipedia

    en.wikipedia.org/wiki/Molecularity

    The kinetic order of any elementary reaction or reaction step is equal to its molecularity, and the rate equation of an elementary reaction can therefore be determined by inspection, from the molecularity. [1] The kinetic order of a complex (multistep) reaction, however, is not necessarily equal to the number of molecules involved.