Search results
Results from the WOW.Com Content Network
Load regulation of a constant-voltage source is defined by the equation: [3] % = % Where: is the voltage at maximum load. The maximum load is the one that draws the greatest current, i.e. the lowest specified load resistance (never short circuit);
In electrical engineering, particularly power engineering, voltage regulation is a measure of change in the voltage magnitude between the sending and receiving end of a component, such as a transmission or distribution line. Voltage regulation describes the ability of a system to provide near constant voltage over a wide range of load ...
A low line regulation is always preferred. In practice, a well regulated power supply should have a line regulation of at most 0.1%. [1] In the regulator device datasheets the line regulation is expressed as percent change in output with respect to change in input per volt of the output. Mathematically it is expressed as:
Line regulation or input regulation is the degree to which output voltage changes with input (supply) voltage changes—as a ratio of output to input change (for example, "typically 13 mV/V"), or the output voltage change over the entire specified input voltage range (for example, "plus or minus 2% for input voltages between 90 V and 260 V, 50 ...
Adding droop in a voltage regulation circuit increases the headroom for load transients. All electrical systems have some amount of resistance between the regulator output and the load. At high currents, even a small resistance results in substantial voltage drop between the regulator and the load. Conversely, when the output current is (near ...
Electric current passing through the conductor causes heating according to Joule's first law, resulting in the conductor expanding and the line sagging. Transmission ratings are set with a maximum allowable conductor temperature (annealing temperature) and minimum clearance rules to comply with legislation and regulation. [1]
Low-dropout (LDO) regulators operate similarly to all linear voltage regulators.The main difference between LDO and non-LDO regulators is their schematic topology.Instead of an emitter follower topology, low-dropout regulators consist of an open collector or open drain topology, where the transistor may be easily driven into saturation with the voltages available to the regulator.
Simplified model for powering a load with resistance R L by a source with voltage V S and resistance R S.. The theorem was originally misunderstood (notably by Joule [4]) to imply that a system consisting of an electric motor driven by a battery could not be more than 50% efficient, since the power dissipated as heat in the battery would always be equal to the power delivered to the motor when ...