Search results
Results from the WOW.Com Content Network
Load regulation of a constant-voltage source is defined by the equation: [3] % = % Where: is the voltage at maximum load. The maximum load is the one that draws the greatest current, i.e. the lowest specified load resistance (never short circuit);
In the voltage regulation formula, V no load is the voltage measured at the receiving end terminals when the receiving end is an open circuit. The entire short line model is an open circuit in this condition, and no current flows in an open circuit, so I = 0 A and the voltage drop across the line given by Ohm’s law V line drop = IZ line is 0 V.
A low line regulation is always preferred. In practice, a well regulated power supply should have a line regulation of at most 0.1%. [1] In the regulator device datasheets the line regulation is expressed as percent change in output with respect to change in input per volt of the output. Mathematically it is expressed as:
The red curve shows the power in the load, normalized relative to its maximum possible. The dark blue curve shows the efficiency η. The efficiency η is the ratio of the power dissipated by the load resistance R L to the total power dissipated by the circuit (which includes the voltage source's resistance of R S as well as R L):
In power engineering, the power-flow study, or load-flow study, is a numerical analysis of the flow of electric power in an interconnected system. A power-flow study usually uses simplified notations such as a one-line diagram and per-unit system, and focuses on various aspects of AC power parameters, such as Voltage, voltage angles, real power and reactive power.
Adding droop in a voltage regulation circuit increases the headroom for load transients. All electrical systems have some amount of resistance between the regulator output and the load. At high currents, even a small resistance results in substantial voltage drop between the regulator and the load. Conversely, when the output current is (near ...
Line regulation or input regulation is the degree to which output voltage changes with input (supply) voltage changes—as a ratio of output to input change (for example, "typically 13 mV/V"), or the output voltage change over the entire specified input voltage range (for example, "plus or minus 2% for input voltages between 90 V and 260 V, 50 ...
This circuit has much better regulation than the simple shunt regulator, since the base current of the transistor forms a very light load on the Zener, thereby minimising variation in Zener voltage due to variation in the load. Note that the output voltage will always be about 0.65 V less than the Zener due to the transistor's V BE drop ...