Search results
Results from the WOW.Com Content Network
The Larmor frequency is important in NMR spectroscopy. The gyromagnetic ratios, which give the Larmor frequencies at a given magnetic field strength, have been measured and tabulated. [3] Crucially, the Larmor frequency is independent of the polar angle between the applied magnetic field and the magnetic moment direction.
Solving gives the angular frequency (Larmor frequency) with the magnetic field pointing on z-axis: = The minus sign is necessary. It reflects that the J is rotating in left-hand when the thumb is pointing as the H field. when turned on the rotating magnetic field (B R), with angular frequency ω. In the rotating frame of the rotating field, the ...
Nuclear magnetic resonance (NMR) spectroscopy uses the intrinsic magnetic moment that arises from the spin angular momentum of a spin-active nucleus. [1] If the element of interest has a nuclear spin that is not zero, [1] the nucleus may exist in different spin angular momentum states, where the energy of these states can be affected by an external magnetic field.
This polarization takes a characteristic time T1. Second, the hydrogen atoms are tipped by a short burst from an oscillating magnetic field that is designed so that they precess in resonance in a plane perpendicular to B0. The frequency of oscillation is the Larmor frequency. The precession of the hydrogen atoms induces a signal in the antenna.
Taking for example the H 2 O molecules in liquid phase without the contamination of oxygen-17, the value of K is 1.02×10 10 s −2 and the correlation time is on the order of picoseconds = s, while hydrogen nuclei 1 H at 1.5 tesla precess at a Larmor frequency of approximately 64 MHz (Simplified. BPP theory uses angular frequency indeed).
A simplified version of the Rabi method consists of a beam of atoms, all having the same speed and the same direction, sent through one interaction zone of length .The atoms are two-level atoms with a transition energy of (this is defined by applying a field ‖ in an excitation direction ^, and thus = | ‖ |, the Larmor frequency), and with an interaction time of = / in the interaction zone.
The most available source for protons in the human body is represented by hydrogen atoms in water. A strong magnetic field B {\displaystyle B} applied to water causes the appearance of two different energy levels for spin angular momentum, + γ ℏ B / 2 {\displaystyle +\gamma \hbar B/2} and − γ ℏ B / 2 {\displaystyle -\gamma \hbar B/2 ...
Free induction decay (FID) nuclear magnetic resonance signal seen from a well shimmed sample. In Fourier transform nuclear magnetic resonance spectroscopy, free induction decay (FID) is the observable nuclear magnetic resonance (NMR) signal generated by non-equilibrium nuclear spin magnetization precessing about the magnetic field (conventionally along z).