Search results
Results from the WOW.Com Content Network
The two plastic limit theorems apply to any elastic-perfectly plastic body or assemblage of bodies. Lower limit theorem: If an equilibrium distribution of stress can be found which balances the applied load and nowhere violates the yield criterion, the body (or bodies) will not fail, or will be just at the point of failure. [2] Upper limit theorem:
Plastic deformation of a thin metal sheet. Flow plasticity is a solid mechanics theory that is used to describe the plastic behavior of materials. [1] Flow plasticity theories are characterized by the assumption that a flow rule exists that can be used to determine the amount of plastic deformation in the material.
Thus, a point defining true stress–strain curve is displaced upwards and to the left to define the equivalent engineering stress–strain curve. The difference between the true and engineering stresses and strains will increase with plastic deformation. At low strains (such as elastic deformation), the differences between the two is ...
The boundary conditions that are needed to solve the equilibrium equations of plate theory can be obtained from the boundary terms in the principle of virtual work. For small strains and small rotations, the boundary conditions are
For elastomers, such as rubber, the elastic limit is much larger than the proportionality limit. Also, precise strain measurements have shown that plastic strain begins at very low stresses. [11] [12] Yield point The point in the stress-strain curve at which the curve levels off and plastic deformation begins to occur. [13]
The strain can be decomposed into a recoverable elastic strain (ε e) and an inelastic strain (ε p). The stress at initial yield is σ 0 . Work hardening , also known as strain hardening , is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation.
The Lankford coefficient (also called Lankford value, R-value, or plastic strain ratio) [1] is a measure of the plastic anisotropy of a rolled sheet metal. This scalar quantity is used extensively as an indicator of the formability of recrystallized low-carbon steel sheets.
To ensure that voids do not form between individually deforming grains, the GB constraint for the bicrystal is as follows: ε xx A = ε xx B (the x-axial strain at the GB must be equivalent for A and B), ε zz A = ε zz B (the z-axial strain at the GB must be equivalent for A and B), and ε xz A = ε xz B (the xz shear strain along the xz-GB ...