Search results
Results from the WOW.Com Content Network
In mathematics, the special linear group SL(n, R) of degree n over a commutative ring R is the set of n × n matrices with determinant 1, with the group operations of ordinary matrix multiplication and matrix inversion. This is the normal subgroup of the general linear group given by the kernel of the determinant
In mathematics, the general linear group of degree n is the set of n×n invertible matrices, together with the operation of ordinary matrix multiplication.This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible, with the identity matrix as the identity element of the group.
In mathematics, the special linear group SL(2, R) or SL 2 (R) is the group of 2 × 2 real matrices with determinant one: (,) = {():,,, =}.It is a connected non-compact simple real Lie group of dimension 3 with applications in geometry, topology, representation theory, and physics.
The group GL n (K) itself; The special linear group SL n (K) (the subgroup of matrices with determinant 1); The group of invertible upper (or lower) triangular matrices; If g i is a collection of elements in GL n (K) indexed by a set I, then the subgroup generated by the g i is a linear group.
In mathematics, the projective special linear group PSL(2, 7), isomorphic to GL(3, 2), is a finite simple group that has important applications in algebra, geometry, and number theory. It is the automorphism group of the Klein quartic as well as the symmetry group of the Fano plane.
Algebraic tori form an important class of commutative group schemes, defined either by the property of being locally on S a product of copies of G m, or as groups of multiplicative type associated to finitely generated free abelian groups. The general linear group GL n is an affine algebraic variety that can be viewed as the multiplicative ...
The center of the general linear group over a field F, GL n (F), is the collection of scalar matrices, { sI n ∣ s ∈ F \ {0} }. The center of the orthogonal group, O n (F) is {I n, −I n}. The center of the special orthogonal group, SO(n) is the whole group when n = 2, and otherwise {I n, −I n} when n is even, and trivial when n is odd.
The next important class of groups is given by matrix groups, or linear groups. Here G is a set consisting of invertible matrices of given order n over a field K that is closed under the products and inverses. Such a group acts on the n-dimensional vector space K n by linear transformations.