Search results
Results from the WOW.Com Content Network
Following is a table of the change in the boiling point of water with elevation, at intervals of 500 meters over the range of human habitation [the Dead Sea at −430.5 metres (−1,412 ft) to La Rinconada, Peru at 5,100 m (16,700 ft)], then of 1,000 meters over the additional range of uninhabited surface elevation [up to Mount Everest at 8,849 ...
The apparatus is heated. Dissolved gases evolve from the sample first, and the air in the capillary tube expands. Once the sample starts to boil, heating is stopped, and the temperature starts to fall. The temperature at which the liquid sample is sucked into the sealed capillary is the boiling point of the sample. [1] [2] [3] [4]
The entropy of vaporization of XeF 6 at its boiling point has the extraordinarily high value of 136.9 J/(K·mol). [4] The characteristic of those liquids to which Trouton’s rule cannot be applied is their special interaction between molecules, such as hydrogen bonding. The entropy of vaporization of water and ethanol shows positive deviance ...
The Thiele tube, named after the German chemist Johannes Thiele, is a laboratory glassware designed to contain and heat an oil bath. Such a setup is commonly used in the determination of the melting point or boiling point of a substance. The apparatus resembles a glass test tube with an attached handle.
At the normal boiling point of a liquid, the vapor pressure is equal to the standard atmospheric pressure defined as 1 atmosphere, [1] 760 Torr, 101.325 kPa, or 14.69595 psi. For example, at any given temperature, methyl chloride has the highest vapor pressure of any of the liquids in the chart.
In physics, an ebullioscope (from Latin ēbullīre 'to boil') is an instrument for measuring the boiling point of a liquid. This can be used for determining the alcoholic strength of a mixture, or for determining the molecular weight of a non-volatile solute based on the boiling-point elevation. The procedure is known as ebullioscopy.
The boiling point elevation happens both when the solute is an electrolyte, such as various salts, and a nonelectrolyte. In thermodynamic terms, the origin of the boiling point elevation is entropic and can be explained in terms of the vapor pressure or chemical potential of the solvent. In both cases, the explanation depends on the fact that ...
In thermodynamics, the ebullioscopic constant K b relates molality b to boiling point elevation. [1] It is the ratio of the latter to the former: = i is the van 't Hoff factor, the number of particles the solute splits into or forms when dissolved. b is the molality of the solution.