Search results
Results from the WOW.Com Content Network
In fact, the force is termed weak because its field strength over any set distance is typically several orders of magnitude less than that of the electromagnetic force, which itself is further orders of magnitude less than the strong nuclear force. The weak interaction is the only fundamental interaction that breaks parity symmetry, and ...
The nuclear force is distinct from what historically was known as the weak nuclear force. The weak interaction is one of the four fundamental interactions, and plays a role in processes such as beta decay. The weak force plays no role in the interaction of nucleons, though it is responsible for the decay of neutrons to protons and vice versa.
Chien-Shiung Wu, after whom the Wu experiment is named, designed the experiment and led the team that carried out the test of the conservation of parity in 1956.. The Wu experiment was a particle and nuclear physics experiment conducted in 1956 by the Chinese American physicist Chien-Shiung Wu in collaboration with the Low Temperature Group of the US National Bureau of Standards. [1]
Following the success of quantum electrodynamics in the 1950s, attempts were undertaken to formulate a similar theory of the weak nuclear force. This culminated around 1968 in a unified theory of electromagnetism and weak interactions by Sheldon Glashow, Steven Weinberg, and Abdus Salam, for which they shared the 1979 Nobel Prize in Physics.
Weak neutral current interactions are one of the ways in which subatomic particles can interact by means of the weak force. These interactions are mediated by the Z boson . The discovery of weak neutral currents was a significant step toward the unification of electromagnetism and the weak force into the electroweak force , and led to the ...
Weak nuclear force: The weak nuclear force mediates the β decay of a neutron, in which the neutron decays into a proton and in the process emits a β particle and an uncharged particle called a neutrino. As a result of mediating the β decay process, the weak nuclear force plays a key role in supernovas.
The weak interaction or weak nuclear force is responsible for some nuclear phenomena such as beta decay. Electromagnetism and the weak force are now understood to be two aspects of a unified electroweak interaction — this discovery was the first step toward the unified theory known as the Standard Model.
The nuclear force is a close-range force (it is strongly attractive at a distance of 1.0 fm and becomes extremely small beyond a distance of 2.5 fm), and virtually no effect of this force is observed outside the nucleus. The nuclear force also pulls neutrons together, or neutrons and protons. [11]