enow.com Web Search

  1. Ad

    related to: parabola equation focus and directrix practice problems pdf
  2. education.com has been visited by 100K+ users in the past month

    Education.com is great and resourceful - MrsChettyLife

    • Printable Workbooks

      Download & print 300+ workbooks

      written & reviewed by teachers.

    • Digital Games

      Turn study time into an adventure

      with fun challenges & characters.

Search results

  1. Results from the WOW.Com Content Network
  2. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    The curve of the chains of a suspension bridge is always an intermediate curve between a parabola and a catenary, but in practice the curve is generally nearer to a parabola due to the weight of the load (i.e. the road) being much larger than the cables themselves, and in calculations the second-degree polynomial formula of a parabola is used.

  3. Kiepert conics - Wikipedia

    en.wikipedia.org/wiki/Kiepert_conics

    It has been proved that the Kiepert hyperbola is the hyperbola passing through the vertices, the centroid and the orthocenter of the reference triangle and the Kiepert parabola is the parabola inscribed in the reference triangle having the Euler line as directrix and the triangle center X 110 as focus. [1]

  4. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    Define b by the equations c 2 = a 2 − b 2 for an ellipse and c 2 = a 2 + b 2 for a hyperbola. For a circle, c = 0 so a 2 = b 2, with radius r = a = b. For the parabola, the standard form has the focus on the x-axis at the point (a, 0) and the directrix the line with equation x = −a. In standard form the parabola will always pass through the ...

  5. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...

  6. Focus (geometry) - Wikipedia

    en.wikipedia.org/wiki/Focus_(geometry)

    The ellipse thus generated has its second focus at the center of the directrix circle, and the ellipse lies entirely within the circle. For the parabola, the center of the directrix moves to the point at infinity (see Projective geometry). The directrix "circle" becomes a curve with zero curvature, indistinguishable from a straight line.

  7. Focal conics - Wikipedia

    en.wikipedia.org/wiki/Focal_conics

    two parabolas, which are contained in two orthogonal planes and the vertex of one parabola is the focus of the other and vice versa. Focal conics play an essential role answering the question: "Which right circular cones contain a given ellipse or hyperbola or parabola (see below)".

  8. Translation of axes - Wikipedia

    en.wikipedia.org/wiki/Translation_of_axes

    Given the equation + + =, by using a translation of axes, determine whether the locus of the equation is a parabola, ellipse, or hyperbola. Determine foci (or focus), vertices (or vertex), and eccentricity. Solution: To complete the square in x and y, write the equation in the form

  9. Dandelin spheres - Wikipedia

    en.wikipedia.org/wiki/Dandelin_spheres

    However, a parabola has only one Dandelin sphere, and thus has only one directrix. Using the Dandelin spheres, it can be proved that any conic section is the locus of points for which the distance from a point (focus) is proportional to the distance from the directrix. [ 7 ]

  1. Ad

    related to: parabola equation focus and directrix practice problems pdf