enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Restricted maximum likelihood - Wikipedia

    en.wikipedia.org/wiki/Restricted_maximum_likelihood

    In statistics, the restricted (or residual, or reduced) maximum likelihood (REML) approach is a particular form of maximum likelihood estimation that does not base estimates on a maximum likelihood fit of all the information, but instead uses a likelihood function calculated from a transformed set of data, so that nuisance parameters have no effect.

  3. PRESS statistic - Wikipedia

    en.wikipedia.org/wiki/PRESS_statistic

    Given this procedure, the PRESS statistic can be calculated for a number of candidate model structures for the same dataset, with the lowest values of PRESS indicating the best structures. Models that are over-parameterised ( over-fitted ) would tend to give small residuals for observations included in the model-fitting but large residuals for ...

  4. Regression validation - Wikipedia

    en.wikipedia.org/wiki/Regression_validation

    An illustrative plot of a fit to data (green curve in top panel, data in red) plus a plot of residuals: red points in bottom plot. Dashed curve in bottom panel is a straight line fit to the residuals. If the functional form is correct then there should be little or no trend to the residuals - as seen here.

  5. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean). The distinction is most important in regression analysis , where the concepts are sometimes called the regression errors and regression residuals and where they lead to the concept of studentized residuals .

  6. Residual sum of squares - Wikipedia

    en.wikipedia.org/wiki/Residual_sum_of_squares

    The general regression model with n observations and k explanators, the first of which is a constant unit vector whose coefficient is the regression intercept, is = + where y is an n × 1 vector of dependent variable observations, each column of the n × k matrix X is a vector of observations on one of the k explanators, is a k × 1 vector of true coefficients, and e is an n× 1 vector of the ...

  7. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    In particular, the residuals should be independent of each other and constant in mean and variance over time. (Plotting the mean and variance of residuals over time and performing a Ljung–Box test or plotting autocorrelation and partial autocorrelation of the residuals are helpful to identify misspecification.) If the estimation is inadequate ...

  8. Lack-of-fit sum of squares - Wikipedia

    en.wikipedia.org/wiki/Lack-of-fit_sum_of_squares

    One takes as estimates of α and β the values that minimize the sum of squares of residuals, i.e., the sum of squares of the differences between the observed y-value and the fitted y-value. To have a lack-of-fit sum of squares that differs from the residual sum of squares, one must observe more than one y-value for each of one or more of the x ...

  9. Deviance (statistics) - Wikipedia

    en.wikipedia.org/wiki/Deviance_(statistics)

    In statistics, deviance is a goodness-of-fit statistic for a statistical model; it is often used for statistical hypothesis testing.It is a generalization of the idea of using the sum of squares of residuals (SSR) in ordinary least squares to cases where model-fitting is achieved by maximum likelihood.