Search results
Results from the WOW.Com Content Network
A relation that is functional and total. For example, the red and green relations in the diagram are functions, but the blue and black ones are not. An injection [d] A function that is injective. For example, the green relation in the diagram is an injection, but the red, blue and black ones are not. A surjection [d] A function that is surjective.
In the mathematics of binary relations, the composition of relations is the forming of a new binary relation R ; S from two given binary relations R and S. In the calculus of relations , the composition of relations is called relative multiplication , [ 1 ] and its result is called a relative product .
A relation R is called intransitive if it is not transitive, that is, if xRy and yRz, but not xRz, for some x, y, z. In contrast, a relation R is called antitransitive if xRy and yRz always implies that xRz does not hold. For example, the relation defined by xRy if xy is an even number is intransitive, [13] but not antitransitive. [14]
For example, the relation + + = defines y as an implicit function of x, called the Bring radical, which has as domain and range. The Bring radical cannot be expressed in terms of the four arithmetic operations and n th roots .
A famous example is the recurrence for the Fibonacci numbers, = + where the order is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients , because the coefficients of the linear function (1 and 1) are constants that do not depend on n . {\displaystyle n.}
For example, the red and green binary relations in the diagram are functions, but the blue and black ones are not. An injection: a function that is injective. For example, the green relation in the diagram is an injection, but the red one is not; the black and the blue relation is not even a function. A surjection: a function that is surjective ...
A function is invertible if and only if its converse relation is a function, in which case the converse relation is the inverse function. The converse relation of a function : is the relation defined by the = {(,): = ()}.
A relation with n "places" is variously called an n-ary relation, an n-adic relation or a relation of degree n. Relations with a finite number of places are called finitary relations (or simply relations if the context is clear). It is also possible to generalize the concept to infinitary relations with infinite sequences. [4]