Search results
Results from the WOW.Com Content Network
Moreover, every positive integer can be written in a unique way as the sum of one or more distinct Fibonacci numbers in such a way that the sum does not include any two consecutive Fibonacci numbers. This is known as Zeckendorf's theorem , and a sum of Fibonacci numbers that satisfies these conditions is called a Zeckendorf representation.
For example, if there were an even integer N = p + 1 larger than 4, for p a prime, that could not be expressed as the sum of two primes in the modern sense, then it would be a counterexample to the modern version of the third conjecture (without being a counterexample to the original version).
Express each term of the final sequence y 0, y 1, y 2, ... as the sum of up to two terms of these intermediate sequences: y 0 = x 0, y 1 = z 0, y 2 = z 0 + x 2, y 3 = w 1, etc. After the first value, each successive number y i is either copied from a position half as far through the w sequence, or is the previous value added to one value in the ...
For example, consider the sum: 2 + 5 + 8 + 11 + 14 = 40 {\displaystyle 2+5+8+11+14=40} This sum can be found quickly by taking the number n of terms being added (here 5), multiplying by the sum of the first and last number in the progression (here 2 + 14 = 16), and dividing by 2:
For example, the sum of the first n natural numbers can be denoted as ∑ i = 1 n i {\displaystyle \sum _{i=1}^{n}i} For long summations, and summations of variable length (defined with ellipses or Σ notation), it is a common problem to find closed-form expressions for the result.
In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
It may be used to prove Nicomachus's theorem that the sum of the first cubes equals the square of the sum of the first positive integers. [2] Summation by parts is frequently used to prove Abel's theorem and Dirichlet's test.