Search results
Results from the WOW.Com Content Network
A one-way wave equation is a first-order partial differential equation describing one wave traveling in a direction defined by the vector wave velocity. It contrasts with the second-order two-way wave equation describing a standing wavefield resulting from superposition of two waves in opposite directions (using the squared scalar wave velocity).
The only difference between a homogeneous and an inhomogeneous (partial) differential equation is that in the homogeneous form we only allow 0 to stand on the right side ((,) =), while the inhomogeneous one is much more general, as in (,) could be any function as long as it's continuous and can be continuously differentiated twice.
By comparison with vector wave equations, the scalar wave equation can be seen as a special case of the vector wave equations; in the Cartesian coordinate system, the scalar wave equation is the equation to be satisfied by each component (for each coordinate axis, such as the x component for the x axis) of a vector wave without sources of waves ...
1-dimensional corollaries for two sinusoidal waves The following may be deduced by applying the principle of superposition to two sinusoidal waves, using trigonometric identities. The angle addition and sum-to-product trigonometric formulae are useful; in more advanced work complex numbers and fourier series and transforms are used.
Intuitively, one can think of the inhomogeneous problem as a set of homogeneous problems each starting afresh at a different time slice t = t 0. By linearity, one can add up (integrate) the resulting solutions through time t 0 and obtain the solution for the inhomogeneous problem. This is the essence of Duhamel's principle.
The KP equation was first written in 1970 by Soviet physicists Boris B. Kadomtsev (1928–1998) and Vladimir I. Petviashvili (1936–1993); it came as a natural generalization of the KdV equation (derived by Korteweg and De Vries in 1895). Whereas in the KdV equation waves are strictly one-dimensional, in the KP equation this restriction is ...
The Airy wave train is the only dispersionless wave in one dimensional free space. [20] In higher dimensions, other dispersionless waves are possible. [21] The Airy wave train in phase space. Its shape is a series of parabolas with the same axis, but oscillating according to the Airy function.
where + is the right-going wave and is the left-going wave. It can be seen from this representation that sampling the function at a given point and time merely involves summing two delayed copies of its traveling waves. These traveling waves will reflect at boundaries such as the suspension points of vibrating strings or the open or closed ends ...