enow.com Web Search

  1. Ads

    related to: neutron shielding materials

Search results

  1. Results from the WOW.Com Content Network
  2. Neutron radiation - Wikipedia

    en.wikipedia.org/wiki/Neutron_radiation

    Neutrons readily pass through most material, and hence the absorbed dose (measured in grays) from a given amount of radiation is low, but interact enough to cause biological damage. The most effective shielding materials are water, or hydrocarbons like polyethylene or paraffin wax.

  3. Radiation protection - Wikipedia

    en.wikipedia.org/wiki/Radiation_protection

    The effectiveness of a shielding material in general increases with its atomic number, called Z, except for neutron shielding, which is more readily shielded by the likes of neutron absorbers and moderators such as compounds of boron e.g. boric acid, cadmium, carbon and hydrogen.

  4. Ducrete - Wikipedia

    en.wikipedia.org/wiki/Ducrete

    This ceramic material is a very efficient shielding material since it presents both high atomic number (uranium) for gamma shielding, and low atomic number (water bonded in the concrete) for neutron shielding. [1] There exists an optimum uranium-to-binder ratio for a combined attenuation of gamma and neutron radiation at a given wall thickness.

  5. Control rod - Wikipedia

    en.wikipedia.org/wiki/Control_rod

    As the neutron energy increases, the neutron cross section of most isotopes decreases. The boron isotope 10 B is responsible for the majority of the neutron absorption. Boron-containing materials can also be used as neutron shielding, to reduce the activation of material close to a reactor core.

  6. Neutron activation - Wikipedia

    en.wikipedia.org/wiki/Neutron_activation

    Neutron activation is the process in which neutron radiation induces radioactivity in materials, and occurs when atomic nuclei capture free neutrons, becoming heavier and entering excited states. The excited nucleus decays immediately by emitting gamma rays , or particles such as beta particles , alpha particles , fission products , and ...

  7. Radiation hardening - Wikipedia

    en.wikipedia.org/wiki/Radiation_hardening

    Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation (particle radiation and high-energy electromagnetic radiation), [1] especially for environments in outer space (especially beyond low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear ...

  8. Neutron source - Wikipedia

    en.wikipedia.org/wiki/Neutron_source

    Some isotopes undergo spontaneous fission (SF) with emission of neutrons.The most common spontaneous fission source is the isotope californium-252. 252 Cf and all other SF neutron sources are made by irradiating uranium or a transuranic element in a nuclear reactor, where neutrons are absorbed in the starting material and its subsequent reaction products, transmuting the starting material into ...

  9. Fission products (by element) - Wikipedia

    en.wikipedia.org/wiki/Fission_products_(by_element)

    Neutron capture by materials of the nuclear reactor (shielding, cladding, etc.) or the environment (seawater, soil, etc.) produces activation products (not listed here). These are found in used nuclear reactors and nuclear fallout.

  1. Ads

    related to: neutron shielding materials