Search results
Results from the WOW.Com Content Network
Spur gear. Spur gears or straight-cut gears are the simplest type of gear. They consist of a cylinder or disk with teeth projecting radially. Viewing the gear at 90 degrees from the shaft length (side on) the tooth faces are straight and aligned parallel to the axis of rotation. Looking down the length of the shaft, a tooth's cross section is ...
Earle Buckingham (September 4, 1887 in Bridgeport, Connecticut [1]-1978) [2] was an American mechanical engineer and pioneer in the theory of gears. [3]Buckingham was one of the founders of the theory of gearing and gear design and made significant contributions to this area.
The involute gear profile, sometimes credited to Leonhard Euler, [1] was a fundamental advance in machine design, since unlike with other gear systems, the tooth profile of an involute gear depends only on the number of teeth on the gear, pressure angle, and pitch. That is, a gear's profile does not depend on the gear it mates with.
Spur-gear differential. A spur-gear differential has an equal-sized spur gears at each end, each of which is connected to an output shaft. [8] The input torque (i.e. from the engine or transmission) is applied to the differential via the rotating carrier. [8] Pinion pairs are located within the carrier and rotate freely on pins supported by the ...
A face gear set typically consists of a disk-shaped gear, grooved on at least one face, in combination with a spur, helical, or conical pinion. A face gear has a planar pitch surface and a planar root surface, both of which are perpendicular to the axis of rotation. [ 1 ]
Two meshed spur gears, with a 2:1 ratio. The simplest example of a gear train has two gears. The input gear (also known as the drive gear or driver) transmits power to the output gear (also known as the driven gear). The input gear will typically be connected to a power source, such as a motor or engine.
The key to the design of the strain wave gear is that there are fewer teeth (often for example two fewer) on the flex spline than there are on the circular spline. This means that for every full rotation of the wave generator, the flex spline would be required to rotate a slight amount (two teeth in this example) backward relative to the ...
Therefore, regardless of the worm's size (sensible engineering limits notwithstanding), the gear ratio is the "size of the worm wheel - to - 1". Given a single-start worm, a 20-tooth worm wheel reduces the speed by the ratio of 20:1. With spur gears, a gear of 12 teeth must match with a 240-tooth gear to achieve the same 20:1 ratio.