Search results
Results from the WOW.Com Content Network
The highest order of derivation that appears in a (linear) differential equation is the order of the equation. The term b(x), which does not depend on the unknown function and its derivatives, is sometimes called the constant term of the equation (by analogy with algebraic equations), even when this term is a non-constant function.
When physical phenomena are modeled with non-linear equations, they are generally approximated by linear differential equations for an easier solution. The few non-linear ODEs that can be solved explicitly are generally solved by transforming the equation into an equivalent linear ODE (see, for example Riccati equation). [5]
In mathematics and computational science, the Euler method (also called the forward Euler method) is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. It is the most basic explicit method for numerical integration of ordinary differential equations and is the simplest Runge–Kutta ...
First-order means that only the first derivative of y appears in the equation, and higher derivatives are absent. Without loss of generality to higher-order systems, we restrict ourselves to first-order differential equations, because a higher-order ODE can be converted into a larger system of first-order equations by introducing extra variables.
Differential equations that describe natural phenomena almost always have only first and second order derivatives in them, but there are some exceptions, such as the thin-film equation, which is a fourth order partial differential equation.
For a first-order PDE, the method of characteristics discovers so called characteristic curves along which the PDE becomes an ODE. [1] [2] Once the ODE is found, it can be solved along the characteristic curves and transformed into a solution for the original PDE.
The correspondence between Riccati equations and second-order linear ODEs has other consequences. For example, if one solution of a 2nd order ODE is known, then it is known that another solution can be obtained by quadrature, i.e., a simple integration. The same holds true for the Riccati equation.
For an arbitrary system of ODEs, a set of solutions (), …, are said to be linearly-independent if: + … + = is satisfied only for = … = =.A second-order differential equation ¨ = (,, ˙) may be converted into a system of first order linear differential equations by defining = ˙, which gives us the first-order system: