Search results
Results from the WOW.Com Content Network
In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group (−C(=O)−OH) [1] attached to an R-group. The general formula of a carboxylic acid is often written as R−COOH or R−CO 2 H, sometimes as R−C(O)OH with R referring to an organyl group (e.g., alkyl, alkenyl, aryl), or hydrogen, or other groups ...
Decarboxylation. Decarboxylation is a chemical reaction that removes a carboxyl group and releases carbon dioxide (CO 2).Usually, decarboxylation refers to a reaction of carboxylic acids, removing a carbon atom from a carbon chain.
Carboxylation is a chemical reaction in which a carboxylic acid is produced by treating a substrate with carbon dioxide. [1] The opposite reaction is decarboxylation.In chemistry, the term carbonation is sometimes used synonymously with carboxylation, especially when applied to the reaction of carbanionic reagents with CO 2.
The Koch reaction is an organic reaction for the synthesis of tertiary carboxylic acids from alcohols or alkenes and carbon monoxide.Some commonly industrially produced Koch acids include pivalic acid, 2,2-dimethylbutyric acid and 2,2-dimethylpentanoic acid. [1]
The carboxylic acid Schmidt reaction starts with acylium ion 1 obtained from protonation and loss of water. Reaction with hydrazoic acid forms the protonated azido ketone 2 , which goes through a rearrangement reaction with the alkyl group R, migrating over the C-N bond with expulsion of nitrogen.
The Hunsdiecker reaction (also called the Borodin reaction or the Hunsdiecker–Borodin reaction) is a name reaction in organic chemistry whereby silver salts of carboxylic acids react with a halogen to produce an organic halide. [1]
They employed propiolic acid as an alkyne source. One year later, S. Lee applied the decarboxylative coupling reactions toward 2-octynoic acid and phenylpropiolic acid. In 2010, Xue et al. reported the coupling of an aryl halide and alkynyl carboxylic acid under mild reactions conditions and a copper-only catalyst to obtain aryl alkynes.
The Pinnick oxidation is an organic reaction by which aldehydes can be oxidized into their corresponding carboxylic acids using sodium chlorite (NaClO 2) under mild acidic conditions. It was originally developed by Lindgren and Nilsson. [1] The typical reaction conditions used today were developed by G. A. Kraus.