enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    For example, for Newton's method as applied to a function f to oscillate between 0 and 1, it is only necessary that the tangent line to f at 0 intersects the x-axis at 1 and that the tangent line to f at 1 intersects the x-axis at 0. [17] This is the case, for example, if f(x) = x 3 − 2x + 2.

  3. Linear approximation - Wikipedia

    en.wikipedia.org/wiki/Linear_approximation

    Therefore, the expression on the right-hand side is just the equation for the tangent line to the graph of at (, ()). For this reason, this process is also called the tangent line approximation . Linear approximations in this case are further improved when the second derivative of a, f ″ ( a ) {\displaystyle f''(a)} , is sufficiently small ...

  4. Order of approximation - Wikipedia

    en.wikipedia.org/wiki/Order_of_approximation

    In the zeroth-order example above, the quantity "a few" was given, but in the first-order example, the number "4" is given. A first-order approximation of a function (that is, mathematically determining a formula to fit multiple data points) will be a linear approximation, straight line with a slope: a polynomial of degree 1. For example:

  5. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    Explicit examples from the linear multistep family include the Adams–Bashforth methods, and any Runge–Kutta method with a lower diagonal Butcher tableau is explicit. A loose rule of thumb dictates that stiff differential equations require the use of implicit schemes, whereas non-stiff problems can be solved more efficiently with explicit ...

  6. Approximation theory - Wikipedia

    en.wikipedia.org/wiki/Approximation_theory

    For example, one can tell from looking at the graph that the point at −0.1 should have been at about −0.28. The way to do this in the algorithm is to use a single round of Newton's method . Since one knows the first and second derivatives of P ( x ) − f ( x ) , one can calculate approximately how far a test point has to be moved so that ...

  7. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).

  8. Numerical analysis - Wikipedia

    en.wikipedia.org/wiki/Numerical_analysis

    Examples include Gaussian elimination, the QR factorization method for solving systems of linear equations, and the simplex method of linear programming. In practice, finite precision is used and the result is an approximation of the true solution (assuming stability ).

  9. Linearization - Wikipedia

    en.wikipedia.org/wiki/Linearization

    This linearization of the system with respect to each of the fields results in a linearized monolithic equation system that can be solved using monolithic iterative solution procedures such as the Newton–Raphson method. Examples of this include MRI scanner systems which results in a system of electromagnetic, mechanical and acoustic fields. [5]