enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Statistical model validation - Wikipedia

    en.wikipedia.org/wiki/Statistical_model_validation

    A model can be validated only relative to some application area. [2] [3] A model that is valid for one application might be invalid for some other applications. As an example, consider the curve in Figure 1: if the application only used inputs from the interval [0, 2], then the curve might well be an acceptable model.

  3. Verification and validation of computer simulation models

    en.wikipedia.org/wiki/Verification_and...

    Comparing curves with fixed sample size tradeoffs between model builder's risk and model user's risk can be seen easily in the risk curves. [7] If model builder's risk, model user's risk, and the upper and lower limits for the range of accuracy are all specified then the sample size needed can be calculated. [7]

  4. Learning curve (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Learning_curve_(machine...

    In machine learning (ML), a learning curve (or training curve) is a graphical representation that shows how a model's performance on a training set (and usually a validation set) changes with the number of training iterations (epochs) or the amount of training data. [1]

  5. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  6. Verification and validation - Wikipedia

    en.wikipedia.org/wiki/Verification_and_validation

    Verification is intended to check that a product, service, or system meets a set of design specifications. [6] [7] In the development phase, verification procedures involve performing special tests to model or simulate a portion, or the entirety, of a product, service, or system, then performing a review or analysis of the modeling results.

  7. Cross-validation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Cross-validation_(statistics)

    Of the k subsamples, a single subsample is retained as the validation data for testing the model, and the remaining k − 1 subsamples are used as training data. The cross-validation process is then repeated k times, with each of the k subsamples used exactly once as the validation data.

  8. Cumulative accuracy profile - Wikipedia

    en.wikipedia.org/wiki/Cumulative_accuracy_profile

    The accuracy ratio (AR) is defined as the ratio of the area between the model CAP and random CAP, and the area between the perfect CAP and random CAP. [2] In a successful model, the AR has values between zero and one, and the higher the value is, the stronger the model. The cumulative number of positive outcomes indicates a model's strength.

  9. Regression validation - Wikipedia

    en.wikipedia.org/wiki/Regression_validation

    However, an R 2 close to 1 does not guarantee that the model fits the data well. For example, if the functional form of the model does not match the data, R 2 can be high despite a poor model fit. Anscombe's quartet consists of four example data sets with similarly high R 2 values, but data that sometimes clearly does not fit the regression line.