enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Optimal solutions for the Rubik's Cube - Wikipedia

    en.wikipedia.org/wiki/Optimal_solutions_for_the...

    To solve this problem, Kociemba devised a lookup table that provides an exact heuristic for . [18] When the exact number of moves needed to reach G 1 {\displaystyle G_{1}} is available, the search becomes virtually instantaneous: one need only generate 18 cube states for each of the 12 moves and choose the one with the lowest heuristic each time.

  3. Galileo's law of odd numbers - Wikipedia

    en.wikipedia.org/wiki/Galileo's_law_of_odd_numbers

    From the equation for uniform linear acceleration, the distance covered = + for initial speed =, constant acceleration (acceleration due to gravity without air resistance), and time elapsed , it follows that the distance is proportional to (in symbols, ), thus the distance from the starting point are consecutive squares for integer values of time elapsed.

  4. Speed - Wikipedia

    en.wikipedia.org/wiki/Speed

    The average speed of an object in an interval of time is the distance travelled by the object divided by the duration of the interval; [2] the instantaneous speed is the limit of the average speed as the duration of the time interval approaches zero. Speed is the magnitude of velocity (a vector), which indicates additionally the direction of ...

  5. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    He used a ramp to study rolling balls, the ramp slowing the acceleration enough to measure the time taken for the ball to roll a known distance. [1] [2] He measured elapsed time with a water clock, using an "extremely accurate balance" to measure the amount of water. [note 1]

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    Intuitively, the velocity increases linearly, so the average velocity multiplied by time is the distance traveled while increasing the velocity from v 0 to v, as can be illustrated graphically by plotting velocity against time as a straight line graph. Algebraically, it follows from solving [1] for

  7. Naismith's rule - Wikipedia

    en.wikipedia.org/wiki/Naismith's_rule

    Assuming an individual can maintain a speed on the flat of 5 km/h, the route will take 6 hours and 34 minutes. The simplicity of this approach is that the time taken can be easily adjusted for an individual's own (chosen) speed on the flat; at 8 km/h (flat speed) the route will take 4 hours and 6 minutes.

  8. Dead reckoning - Wikipedia

    en.wikipedia.org/wiki/Dead_reckoning

    The basic formula for DR is Distance = Speed x Time. An aircraft flying at 250 knots airspeed for 2 hours has flown 500 nautical miles through the air. The wind triangle is used to calculate the effects of wind on heading and airspeed to obtain a magnetic heading to steer and the speed over the ground (groundspeed).

  9. Pendulum (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Pendulum_(mechanics)

    Speed; Time; Torque; Velocity; Virtual work; ... and solving the following system of equations ... is the distance from the pivot point to the system's centre-of-mass