Search results
Results from the WOW.Com Content Network
Birds, however, can see some red wavelengths, although not as far into the light spectrum as humans. [46] It is a myth that the common goldfish is the only animal that can see both infrared and ultraviolet light; [47] their color vision extends into the ultraviolet but not the infrared. [48]
The four pigments in a bird's cone cells (in this example, estrildid finches) extend the range of color vision into the ultraviolet. [1]Tetrachromacy (from Greek tetra, meaning "four" and chroma, meaning "color") is the condition of possessing four independent channels for conveying color information, or possessing four types of cone cell in the eye.
If the emission or reflection spectrum of a color is 1 (100%) for all the wavelengths between A and B, and 0 for all the wavelengths in the other half of the color space, then that color is a maximum chroma color, semichrome, or full color (this is the explanation to why they were called semichromes). So maximum chroma colors are a type of ...
A fictitious color or imaginary color is a point in a color space that corresponds to combinations of cone cell responses in one eye that cannot be produced by the eye in normal circumstances seeing any possible light spectrum. [4] No physical object can have an imaginary color.
Image credits: Photoglob Zürich "The product name Kodachrome resurfaced in the 1930s with a three-color chromogenic process, a variant that we still use today," Osterman continues.
The spectrum does not contain all the colors that the human visual system can distinguish. Unsaturated colors such as pink, or purple variations like magenta, for example, are absent because they can only be made from a mix of multiple wavelengths. Colors containing only one wavelength are also called pure colors or spectral colors. [8] [9]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Today, most mammals possess dichromatic vision, corresponding to protanopia red–green color blindness. They can thus see violet, blue, green and yellow light, but cannot see ultraviolet or deep red light. [5] [6] This was probably a feature of the first mammalian ancestors, which were likely small, nocturnal, and burrowing.