Search results
Results from the WOW.Com Content Network
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein 's 1905 paper, On the Electrodynamics of Moving Bodies , the theory is presented as being based on just two postulates : [ p 1 ] [ 1 ] [ 2 ]
Special relativity is a theory of the structure of spacetime. It was introduced in Einstein's 1905 paper "On the Electrodynamics of Moving Bodies" (for the contributions of many other physicists and mathematicians, see History of special relativity). Special relativity is based on two postulates which are contradictory in classical mechanics:
The following notations are used very often in special relativity: Lorentz factor = where = and v is the relative velocity between two inertial frames.. For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames.
The theory of Galilean relativity is the limiting case of special relativity in the limit (which is sometimes referred to as the non-relativistic limit). In this theory, the first postulate remains unchanged, but the second postulate is modified to:
The history of special relativity consists of many theoretical results and empirical findings obtained by Albert A. Michelson, Hendrik Lorentz, Henri Poincaré and others. It culminated in the theory of special relativity proposed by Albert Einstein and subsequent work of Max Planck, Hermann Minkowski and others.
The theory of special relativity was initially developed in 1905 by Albert Einstein. However, other interpretations of special relativity have been developed, some on the basis of different foundational axioms. While some are mathematically equivalent to Einstein's theory, others aim to revise or extend it.
The theory, now called the special theory of relativity, distinguishes it from his later general theory of relativity, which considers all observers to be equivalent. Acknowledging the role of Max Planck in the early dissemination of his ideas, Einstein wrote in 1913 "The attention that this theory so quickly received from colleagues is surely ...
In special relativity, an object that has nonzero rest mass cannot travel at the speed of light. As the object approaches the speed of light, the object's energy and momentum increase without bound. In the first years after 1905, following Lorentz and Einstein, the terms longitudinal and transverse mass were still in use.