Search results
Results from the WOW.Com Content Network
If this is the case, then the matrix B is uniquely determined by A, and is called the (multiplicative) inverse of A, denoted by A −1. Matrix inversion is the process of finding the matrix which when multiplied by the original matrix gives the identity matrix. [2] Over a field, a square matrix that is not invertible is called singular or ...
A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I]
In matrix inversion however, instead of vector b, we have matrix B, where B is an n-by-p matrix, so that we are trying to find a matrix X (also a n-by-p matrix): = =. We can use the same algorithm presented earlier to solve for each column of matrix X. Now suppose that B is the identity matrix of size n.
If A is invertible, the Schur complement of the block A of the matrix M is the q × q matrix defined by /:=. In the case that A or D is singular, substituting a generalized inverse for the inverses on M/A and M/D yields the generalized Schur complement.
The complex Schur decomposition reads as follows: if A is an n × n square matrix with complex entries, then A can be expressed as [1] [2] [3] = for some unitary matrix Q (so that the inverse Q −1 is also the conjugate transpose Q* of Q), and some upper triangular matrix U. This is called a Schur form of A.
In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.
In linear algebra, the Sherman–Morrison formula, named after Jack Sherman and Winifred J. Morrison, computes the inverse of a "rank-1 update" to a matrix whose inverse has previously been computed. [1] [2] [3] That is, given an invertible matrix and the outer product of vectors and , the formula cheaply computes an updated matrix inverse (+)).
where R 1 is an n×n upper triangular matrix, 0 is an (m − n)×n zero matrix, Q 1 is m×n, Q 2 is m×(m − n), and Q 1 and Q 2 both have orthogonal columns. Golub & Van Loan (1996 , §5.2) call Q 1 R 1 the thin QR factorization of A ; Trefethen and Bau call this the reduced QR factorization . [ 1 ]