Search results
Results from the WOW.Com Content Network
In mathematics, an unordered pair or pair set is a set of the form {a, b}, i.e. a set having two elements a and b with no particular relation between them, where {a, b} = {b, a}. In contrast, an ordered pair (a, b) has a as its first element and b as its second element, which means (a, b) ≠ (b, a).
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...
A turn is an unordered pair e, h of oriented edges of Γ (not necessarily distinct) having a common initial vertex. A turn e , h is degenerate if e = h and nondegenerate otherwise. A turn e , h is illegal if for some n ≥ 1 the paths f n ( e ) and f n ( h ) have a nontrivial common initial segment (that is, they start with the same edge).
Unordered pair, or pair set, in mathematics and set theory; Ordered pair, or 2-tuple, in mathematics and set theory; Pairing, in mathematics, an R-bilinear map of modules, where R is the underlying ring; Pair type, in programming languages and type theory, a product type with two component types; Topological pair, an inclusion of topological spaces
An undirected graph with three vertices and three edges. In one restricted but very common sense of the term, [1] [2] a graph is an ordered pair = (,) comprising: , a set of vertices (also called nodes or points);
The configuration space of all unordered pairs of points on the circle is the Möbius strip. In mathematics, a configuration space is a construction closely related to state spaces or phase spaces in physics. In physics, these are used to describe the state of a whole system as a single point in a high-dimensional space.
In NFU, these two definitions have a technical disadvantage: the Kuratowski ordered pair is two types higher than its projections, while the Wiener ordered pair is three types higher. It is common to postulate the existence of a type-level ordered pair (a pair ( x , y ) {\displaystyle (x,y)} which is the same type as its projections ) in NFU.