enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photon sphere - Wikipedia

    en.wikipedia.org/wiki/Photon_sphere

    An animation of how light rays can be gravitationally bent to form a photon sphere. A photon sphere, or photon ring [1] or photon circle, [2] arises in a neighbourhood of the event horizon of a black hole where gravity is so strong that emitted photons will not just bend around the black hole but also return to the point where they were emitted from and consequently display boomerang-like ...

  3. Black hole - Wikipedia

    en.wikipedia.org/wiki/Black_hole

    A black hole with the mass of a car would have a diameter of about 10 −24 m and take a nanosecond to evaporate, during which time it would briefly have a luminosity of more than 200 times that of the Sun. Lower-mass black holes are expected to evaporate even faster; for example, a black hole of mass 1 TeV/c 2 would take less than 10 −88 ...

  4. Gravitational singularity - Wikipedia

    en.wikipedia.org/wiki/Gravitational_singularity

    While in a non-rotating black hole the singularity occurs at a single point in the model coordinates, called a "point singularity", in a rotating black hole, also known as a Kerr black hole, the singularity occurs on a ring (a circular line), known as a "ring singularity". Such a singularity may also theoretically become a wormhole. [16]

  5. Binary black hole - Wikipedia

    en.wikipedia.org/wiki/Binary_black_hole

    Computer simulation of the black hole binary system GW150914 as seen by a nearby observer, during its final inspiral, merge, and ringdown.The star field behind the black holes is being heavily distorted and appears to rotate and move, due to extreme gravitational lensing, as space-time itself is distorted and dragged around by the rotating black holes.

  6. Rotating black hole - Wikipedia

    en.wikipedia.org/wiki/Rotating_black_hole

    A rotating black hole is a black hole that possesses angular momentum. In particular, it rotates about one of its axes of symmetry. All celestial objects – planets, stars , galaxies, black holes – spin. [1] [2] [3] The boundaries of a Kerr black hole relevant to astrophysics. Note that there are no physical "surfaces" as such.

  7. Kugelblitz (astrophysics) - Wikipedia

    en.wikipedia.org/wiki/Kugelblitz_(astrophysics)

    In other words, if enough radiation is aimed into a region of space, the concentration of energy can warp spacetime so much that it creates a black hole. This would be a black hole the original mass–energy of which was in the form of radiant energy rather than matter; [ 1 ] however, there is currently no uniformly accepted method of ...

  8. Kerr metric - Wikipedia

    en.wikipedia.org/wiki/Kerr_metric

    The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon.The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.

  9. Ergosphere - Wikipedia

    en.wikipedia.org/wiki/Ergosphere

    A black hole with modest angular momentum has an ergosphere with a shape approximated by an oblate spheroid, while faster spins produce a more pumpkin-shaped ergosphere. The equatorial (maximal) radius of an ergosphere is the Schwarzschild radius, the radius of a non-rotating black hole. The polar (minimal) radius is also the polar (minimal ...