enow.com Web Search

  1. Ads

    related to: joule thomson temperature monitor

Search results

  1. Results from the WOW.Com Content Network
  2. Joule–Thomson effect - Wikipedia

    en.wikipedia.org/wiki/JouleThomson_effect

    In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.

  3. Inversion temperature - Wikipedia

    en.wikipedia.org/wiki/Inversion_temperature

    This temperature change is known as the Joule–Thomson effect, and is exploited in the liquefaction of gases. Inversion temperature depends on the nature of the gas. For a van der Waals gas we can calculate the enthalpy using statistical mechanics as

  4. An Inquiry Concerning the Source of the Heat Which Is Excited ...

    en.wikipedia.org/wiki/An_Inquiry_Concerning_the...

    Joule's apparatus for measuring the mechanical equivalent of heat. Most established scientists, such as William Henry, [13] as well as Thomas Thomson, believed that there was enough uncertainty in the caloric theory to allow its adaptation to account for the new results. It had certainly proved robust and adaptable up to that time.

  5. Joule effect - Wikipedia

    en.wikipedia.org/wiki/Joule_effect

    The Joule–Thomson effect, the temperature change of a gas when it is forced through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment. The Gough–Joule effect or the Gow–Joule effect, which is the tendency of elastomers to contract if heated while they are under tension.

  6. Real gas - Wikipedia

    en.wikipedia.org/wiki/Real_gas

    Where p is the pressure, T is the temperature, R the ideal gas constant, and V m the molar volume. a and b are parameters that are determined empirically for each gas, but are sometimes estimated from their critical temperature (T c) and critical pressure (p c) using these relations:

  7. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    For real gasses, the molecules do interact via attraction or repulsion depending on temperature and pressure, and heating or cooling does occur. This is known as the Joule–Thomson effect. For reference, the Joule–Thomson coefficient μ JT for air at room temperature and sea level is 0.22 °C/bar. [7]

  8. Van der Waals equation - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_equation

    The Joule–Thomson coefficient, = |, is of practical importance because the two end states of a throttling process (=) lie on a constant enthalpy curve. Although ideal gases, for which h = h ( T ) {\displaystyle h=h(T)} , do not change temperature in such a process, real gases do, and it is important in applications to know whether they heat ...

  9. Joule–Thomson cooling - Wikipedia

    en.wikipedia.org/?title=JouleThomson_cooling...

    This page was last edited on 15 April 2017, at 14:10 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...

  1. Ads

    related to: joule thomson temperature monitor