Search results
Results from the WOW.Com Content Network
Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is: c = b e mod m = d −e mod m, where e < 0 and b ⋅ d ≡ 1 (mod m). Modular exponentiation is efficient to compute, even for very large integers.
The method is based on the observation that, for any integer >, one has: = {() /, /,. If the exponent n is zero then the answer is 1. If the exponent is negative then we can reuse the previous formula by rewriting the value using a positive exponent.
Exponentiation with negative exponents is defined by the following identity, which holds for any integer n and nonzero b: =. [1] Raising 0 to a negative exponent is undefined but, in some circumstances, it may be interpreted as infinity (). [24]
For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d. Derivations also use the log definitions x = b log b (x ...
Exponentiation is an arithmetic operation in which a number, known as the base, is raised to the power of another number, known as the exponent. The result of this operation is called the power. Exponentiation is sometimes expressed using the symbol ^ but the more common way is to write the exponent in superscript right after the
There is no standard notation for tetration, though Knuth's up arrow notation and the left-exponent are common. Under the definition as repeated exponentiation, n a {\displaystyle {^{n}a}} means a a ⋅ ⋅ a {\displaystyle {a^{a^{\cdot ^{\cdot ^{a}}}}}} , where n copies of a are iterated via exponentiation, right-to-left, i.e. the application ...
The displays of pocket calculators of the 1970s did not display an explicit symbol between significand and exponent; instead, one or more digits were left blank (e.g. 6.022 23, as seen in the HP-25), or a pair of smaller and slightly raised digits were reserved for the exponent (e.g. 6.022 23, as seen in the Commodore PR100).
For example, on a simple calculator, typing 1 + 2 × 3 = yields 9, while a more sophisticated calculator will use a more standard priority, so typing 1 + 2 × 3 = yields 7. Calculators may associate exponents to the left or to the right.