enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Luminosity - Wikipedia

    en.wikipedia.org/wiki/Luminosity

    Blue and white supergiants are high luminosity stars somewhat cooler than the most luminous main sequence stars. A star like Deneb, for example, has a luminosity around 200,000 L ⊙, a spectral type of A2, and an effective temperature around 8,500 K, meaning it has a radius around 203 R ☉ (1.41 × 10 11 m).

  3. Magnitude (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Magnitude_(astronomy)

    Note that the brighter the star, the smaller the magnitude: Bright "first magnitude" stars are "1st-class" stars, while stars barely visible to the naked eye are "sixth magnitude" or "6th-class". The system was a simple delineation of stellar brightness into six distinct groups but made no allowance for the variations in brightness within a group.

  4. Absolute magnitude - Wikipedia

    en.wikipedia.org/wiki/Absolute_magnitude

    In astronomy, absolute magnitude (M) is a measure of the luminosity of a celestial object on an inverse logarithmic astronomical magnitude scale; the more luminous (intrinsically bright) an object, the lower its magnitude number.

  5. Apparent magnitude - Wikipedia

    en.wikipedia.org/wiki/Apparent_magnitude

    Calibrator stars close in the sky to the target are favoured (to avoid large differences in the atmospheric paths). If those stars have somewhat different zenith angles then a correction factor as a function of airmass can be derived and applied to the airmass at the target's position. Such calibration obtains the brightness as would be ...

  6. Star - Wikipedia

    en.wikipedia.org/wiki/Star

    It is a function of the star's luminosity, its distance from Earth, the extinction effect of interstellar dust and gas, and the altering of the star's light as it passes through Earth's atmosphere. Intrinsic or absolute magnitude is directly related to a star's luminosity, and is the apparent magnitude a star would be if the distance between ...

  7. Stellar classification - Wikipedia

    en.wikipedia.org/wiki/Stellar_classification

    This is based on the width of certain absorption lines in the star's spectrum, which vary with the density of the atmosphere and so distinguish giant stars from dwarfs. Luminosity class 0 or Ia+ is used for hypergiants, class I for supergiants, class II for bright giants, class III for regular giants, class IV for subgiants, class V for main ...

  8. Stellar structure - Wikipedia

    en.wikipedia.org/wiki/Stellar_structure

    Typical boundary conditions set the values of the observable parameters appropriately at the surface (=) and center (=) of the star: () =, meaning the pressure at the surface of the star is zero; () =, there is no mass inside the center of the star, as required if the mass density remains finite; () =, the total mass of the star is the star's ...

  9. Luminosity distance - Wikipedia

    en.wikipedia.org/wiki/Luminosity_distance

    The object's actual luminosity is determined using the inverse-square law and the proportions of the object's apparent distance and luminosity distance. Another way to express the luminosity distance is through the flux-luminosity relationship, = where F is flux (W·m −2), and L is luminosity (W). From this the luminosity distance (in meters ...