enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ship resistance and propulsion - Wikipedia

    en.wikipedia.org/wiki/Ship_resistance_and_propulsion

    For thousands of years ship designers and builders of sailing vessels used rules of thumb based on the midship-section area to size the sails for a given vessel. The hull form and sail plan for the clipper ships, for example, evolved from experience, not from theory. It was not until the advent of steam power and the construction of large iron ...

  3. Free-energy relationship - Wikipedia

    en.wikipedia.org/wiki/Free-energy_relationship

    The Hammett equation predicts the equilibrium constant or reaction rate of a reaction from a substituent constant and a reaction type constant. The Edwards equation relates the nucleophilic power to polarisability and basicity. The Marcus equation is an example of a quadratic free-energy relationship (QFER). [citation needed]

  4. UNIFAC - Wikipedia

    en.wikipedia.org/wiki/UNIFAC

    A particular problem in the area of liquid-state thermodynamics is the sourcing of reliable thermodynamic constants. These constants are necessary for the successful prediction of the free energy state of the system; without this information it is impossible to model the equilibrium phases of the system.

  5. Capstan equation - Wikipedia

    en.wikipedia.org/wiki/Capstan_equation

    Schematic of quantities for capstan equation An example of holding capstans and a powered capstan used to raise sails on a tall ship. The capstan equation [1] or belt friction equation, also known as Euler–Eytelwein formula [2] (after Leonhard Euler and Johann Albert Eytelwein), [3] relates the hold-force to the load-force if a flexible line ...

  6. Ship stability - Wikipedia

    en.wikipedia.org/wiki/Ship_stability

    Ship stability is an area of naval architecture and ship design that deals with how a ship behaves at sea, both in still water and in waves, whether intact or damaged. Stability calculations focus on centers of gravity , centers of buoyancy , the metacenters of vessels, and on how these interact.

  7. Quantitative structure–activity relationship - Wikipedia

    en.wikipedia.org/wiki/Quantitative_structure...

    The underlying problem is therefore how to define a small difference on a molecular level, since each kind of activity, e.g. reaction ability, biotransformation ability, solubility, target activity, and so on, might depend on another difference. Examples were given in the bioisosterism reviews by Patanie/LaVoie [13] and Brown. [14]

  8. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  9. Fouling - Wikipedia

    en.wikipedia.org/wiki/Fouling

    An example of the temperature dependence of solubility is shown in the figure. Calcium sulfate is a common precipitation foulant of heating surfaces due to its retrograde solubility. Precipitation fouling can also occur in the absence of heating or vaporization. For example, calcium sulfate decreases its solubility with decreasing pressure.