Search results
Results from the WOW.Com Content Network
The red H-alpha spectral line of the Balmer series of atomic hydrogen, which is the transition from the shell n = 3 to the shell n = 2, is one of the conspicuous colours of the universe. It contributes a bright red line to the spectra of emission or ionisation nebula, like the Orion Nebula , which are often H II regions found in star forming ...
Hydrogen-alpha, typically shortened to H-alpha or Hα, is a deep-red visible spectral line of the hydrogen atom with a wavelength of 656.28 nm in air and 656.46 nm in vacuum. It is the first spectral line in the Balmer series and is emitted when an electron falls from a hydrogen atom's third- to second-lowest energy level.
The Balmer series includes the lines due to transitions from an outer orbit n > 2 to the orbit n' = 2. Named after Johann Balmer, who discovered the Balmer formula, an empirical equation to predict the Balmer series, in 1885. Balmer lines are historically referred to as "H-alpha", "H-beta", "H-gamma" and so on, where H is the element hydrogen. [10]
A demonstration of the 589 nm D 2 (left) and 590 nm D 1 (right) emission sodium D lines using a wick with salt water in a flame. The Fraunhofer C, F, G′, and h lines correspond to the alpha, beta, gamma, and delta lines of the Balmer series of emission lines of the hydrogen atom. The Fraunhofer letters are now rarely used for those lines.
The GME family is composed by two new series of engine: one created by Alfa Romeo (codeproject Giorgio [1]) for Alfa Romeo Giulia and Stelvio, [2] [3] and the second (codeproject Hurricane) by FCA US for American vehicles made by Chrysler, Dodge, and Jeep. Both are produced in Termoli, Italy at the Termoli Powertrain Plant.
Lyman-alpha, typically denoted by Ly-α, is a spectral line of hydrogen (or, more generally, of any one-electron atom) in the Lyman series. It is emitted when the atomic electron transitions from an n = 2 orbital to the ground state ( n = 1), where n is the principal quantum number .
These stars have from 2 to 16 times the mass of the Sun and surface temperatures between 10,000 and 30,000 K. [1] B-type stars are extremely luminous and blue. Their spectra have strong neutral helium absorption lines, which are most prominent at the B2 subclass, and moderately strong hydrogen lines. Examples include Regulus, Algol A and Acrux. [2]
The fine structure energy corrections can be obtained by using perturbation theory.To perform this calculation one must add three corrective terms to the Hamiltonian: the leading order relativistic correction to the kinetic energy, the correction due to the spin–orbit coupling, and the Darwin term coming from the quantum fluctuating motion or zitterbewegung of the electron.