Search results
Results from the WOW.Com Content Network
It takes over 10,000 years to orbit, and during the next 50 years it will slowly move closer to the Sun as it comes to perihelion at a distance of 76 AU from the Sun. [3] Sedna is the largest known sednoid, a class of objects that play an important role in the Planet Nine hypothesis. Pluto (30–49 AU, about 34 AU in 2015) was the first Kuiper ...
Pluto and Neptune's minimum separation is over 17 AU, which is greater than Pluto's minimum separation from Uranus (11 AU). [93] The minimum separation between Pluto and Neptune actually occurs near the time of Pluto's aphelion. [90] Ecliptic longitude of Neptune minus that of Pluto (blue), and rate of change of Pluto's distance from the sun (red).
Like Pluto, its orbit is highly eccentric, with a perihelion of 38.2 AU (roughly Pluto's distance from the Sun) and an aphelion of 97.6 AU, and steeply inclined to the ecliptic plane at an angle of 44°. [220] Gonggong (33.8–101.2 AU) is a dwarf planet in a comparable orbit to Eris, except that it is in a 3:10 resonance with Neptune.
The orbit of Sedna (red) set against the orbits of outer Solar System objects (Pluto's orbit is purple). This is a list of Solar System objects by greatest aphelion or the greatest distance from the Sun that the orbit could take it if the Sun and object were the only objects in the universe.
According to the IAU's explicit count, there are eight planets in the Solar System; four terrestrial planets (Mercury, Venus, Earth, and Mars) and four giant planets, which can be divided further into two gas giants (Jupiter and Saturn) and two ice giants (Uranus and Neptune). When excluding the Sun, the four giant planets account for more than ...
In February 2016, Eris's distance from the Sun was 96.3 AU (14.41 billion km; 8.95 billion mi), [20] more than three times that of Neptune or Pluto. With the exception of long-period comets , Eris and Dysnomia were the most distant known natural objects in the Solar System until the discovery of 2018 AG 37 and 2018 VG 18 in 2018.
2018 VG 18 is a distant trans-Neptunian object (TNO) that was discovered when it was 123 AU (18 billion km; 11 billion mi) from the Sun, more than three times the average distance between the Sun and Pluto.
Their elliptical orbit is eccentric, so that the distance between A and B varies from 35.6 astronomical units (AU), or about the distance between Pluto and the Sun, to 11.2 AU, or about the distance between Saturn and the Sun. One astronomical unit is the distance from Earth to the Sun, 150 million kilometers.