Search results
Results from the WOW.Com Content Network
One particularly distant body is 90377 Sedna, which was discovered in November 2003.It has an extremely eccentric orbit that takes it to an aphelion of 937 AU. [2] It takes over 10,000 years to orbit, and during the next 50 years it will slowly move closer to the Sun as it comes to perihelion at a distance of 76 AU from the Sun. [3] Sedna is the largest known sednoid, a class of objects that ...
When excluding the Sun, the four giant planets account for more than 99% of the mass of the Solar System. ... Mean distance from the Sun: km AU: 57,909,175 0.38709893 ...
Thus, the Sun occupies 0.00001% (1 part in 10 7) of the volume of a sphere with a radius the size of Earth's orbit, whereas Earth's volume is roughly 1 millionth (10 −6) that of the Sun. Jupiter, the largest planet, is 5.2 AU from the Sun and has a radius of 71,000 km (0.00047 AU; 44,000 mi), whereas the most distant planet, Neptune, is 30 AU ...
This is because the distance between Earth and the Sun is not fixed (it varies between 0.983 289 8912 and 1.016 710 3335 au) and, when Earth is closer to the Sun , the Sun's gravitational field is stronger and Earth is moving faster along its orbital path. As the metre is defined in terms of the second and the speed of light is constant for all ...
2018 AG 37 is a distant trans-Neptunian object and centaur that was discovered 132.2 ± 1.5 AU (19.78 ± 0.22 billion km) from the Sun, [8] farther than any other currently observable known object in the Solar System.
Mercury has the most eccentric orbit of all the planets in the Solar System; its eccentricity is 0.21 with its distance from the Sun ranging from 46,000,000 to 70,000,000 km (29,000,000 to 43,000,000 mi). It takes 87.969 Earth days to complete an orbit.
Jupiter is the only planet whose barycentre with the Sun lies outside the volume of the Sun, though by 7% of the Sun's radius. [ 130 ] [ 131 ] The average distance between Jupiter and the Sun is 778 million km (5.20 AU) and it completes an orbit every 11.86 years.
The closest encounter to the Sun so far predicted is the low-mass orange dwarf star Gliese 710 / HIP 89825 with roughly 60% the mass of the Sun. [4] It is currently predicted to pass 0.1696 ± 0.0065 ly (10 635 ± 500 au) from the Sun in 1.290 ± 0.04 million years from the present, close enough to significantly disturb the Solar System's Oort ...