Search results
Results from the WOW.Com Content Network
The solution set for the equations x − y = −1 and 3x + y = 9 is the single point (2, 3). A solution of a linear system is an assignment of values to the variables ,, …, such that each of the equations is satisfied. The set of all possible solutions is called the solution set. [5]
A system of polynomial equations (sometimes simply a polynomial system) is a set of simultaneous equations f 1 = 0, ..., f h = 0 where the f i are polynomials in several variables, say x 1, ..., x n, over some field k. A solution of a polynomial system is a set of values for the x i s which belong to some algebraically closed field extension K ...
In mathematics, the solution set of a system of equations or inequality is the set of all its solutions, that is the values that satisfy all equations and inequalities. [1] Also, the solution set or the truth set of a statement or a predicate is the set of all values that satisfy it. If there is no solution, the solution set is the empty set. [2]
The solution set of a given set of equations or inequalities is the set of all its solutions, a solution being a tuple of values, one for each unknown, that satisfies all the equations or inequalities. If the solution set is empty, then there are no values of the unknowns that satisfy simultaneously all equations and inequalities.
The solution is obtained iteratively via (+) = (), where the matrix is decomposed into a lower triangular component , and a strictly upper triangular component such that = +. [4] More specifically, the decomposition of A {\displaystyle A} into L ∗ {\displaystyle L_{*}} and U {\displaystyle U} is given by:
The line that determines the half-planes (ax + by = c) is not included in the solution set when the inequality is strict. A simple procedure to determine which half-plane is in the solution set is to calculate the value of ax + by at a point (x 0, y 0) which is not on the line and observe whether or not the inequality is satisfied.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The solution set to any homogeneous system of linear equations with n variables is a subspace in the coordinate space K n: {[]: + + + = + + + = + + + =}. For example, the set of all vectors ( x , y , z ) (over real or rational numbers ) satisfying the equations x + 3 y + 2 z = 0 and 2 x − 4 y + 5 z = 0 {\displaystyle x+3y+2z=0\quad {\text{and ...