Search results
Results from the WOW.Com Content Network
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
The best known lower bound for matrix-multiplication complexity is Ω(n 2 log(n)), for bounded coefficient arithmetic circuits over the real or complex numbers, and is due to Ran Raz. [31] The exponent ω is defined to be a limit point, in that it is the infimum of the exponent over all matrix multiplication algorithms. It is known that this ...
Since matrix multiplication forms the basis for many algorithms, and many operations on matrices even have the same complexity as matrix multiplication (up to a multiplicative constant), the computational complexity of matrix multiplication appears throughout numerical linear algebra and theoretical computer science.
Download as PDF; Printable version; In other projects Wikidata item; Appearance. move to sidebar hide. Help ... Matrix multiplication algorithm; C. Cannon's algorithm; F.
In linear algebra, the Strassen algorithm, named after Volker Strassen, is an algorithm for matrix multiplication. It is faster than the standard matrix multiplication algorithm for large matrices, with a better asymptotic complexity , although the naive algorithm is often better for smaller matrices.
Freivalds' algorithm (named after Rūsiņš Mārtiņš Freivalds) is a probabilistic randomized algorithm used to verify matrix multiplication. Given three n × n matrices A {\displaystyle A} , B {\displaystyle B} , and C {\displaystyle C} , a general problem is to verify whether A × B = C {\displaystyle A\times B=C} .
Algorithms to which the Method of Four Russians may be applied include: computing the transitive closure of a graph, Boolean matrix multiplication, edit distance calculation, sequence alignment, index calculation for binary jumbled pattern matching. In each of these cases it speeds up the algorithm by one or two logarithmic factors.
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.