Search results
Results from the WOW.Com Content Network
The finite element method (FEM) is a powerful technique originally developed for numerical solution of complex problems in structural mechanics, and it remains the method of choice for complex systems. In the FEM, the structural system is modeled by a set of appropriate finite elements interconnected at
The extended finite element method (XFEM) is a numerical technique based on the generalized finite element method (GFEM) and the partition of unity method (PUM). It extends the classical finite element method by enriching the solution space for solutions to differential equations with discontinuous functions.
The conventional topology optimization formulation uses a finite element method (FEM) to evaluate the design performance. The design is optimized using either gradient-based mathematical programming techniques such as the optimality criteria algorithm and the method of moving asymptotes or non gradient-based algorithms such as genetic algorithms.
MFEM is a free, lightweight, scalable C++ library for finite element methods that features arbitrary high-order finite element meshes and spaces, support for a wide variety of discretizations, and emphasis on usability, generality, and high-performance computing efficiency. MFEM team 4.7 2024-05-07 BSD: Free Linux, Unix, Mac OS X, Windows ...
Post processing of finite element data generally requires additional software or programming to specify how the data is to be transformed or presented. [1] This software may include checks on the codes and standards to which the model must comply (e.g., the check of panel stiffened structures [2]).
The goal of modal analysis in structural mechanics is to determine the natural mode shapes and frequencies of an object or structure during free vibration.It is common to use the finite element method (FEM) to perform this analysis because, like other calculations using the FEM, the object being analyzed can have arbitrary shape and the results of the calculations are acceptable.
The finite element method allows engineers to virtually model components, assemblies, or systems to determine behavior under a given set of boundary conditions, and is typically used in the design process to reduce costly prototyping and testing, evaluate differing designs and materials, and for structural optimization to reduce weight.
The hybrid Trefftz finite-element method has been considerably advanced since its introduction by J. Jiroušek in the late 1970s. [1] The conventional method of finite element analysis involves converting the differential equation that governs the problem into a variational functional from which element nodal properties – known as field variables – can be found.