enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cartesian product - Wikipedia

    en.wikipedia.org/wiki/Cartesian_product

    If the Cartesian product rows × columns is taken, the cells of the table contain ordered pairs of the form (row value, column value). [4] One can similarly define the Cartesian product of n sets, also known as an n-fold Cartesian product, which can be represented by an n-dimensional array, where each element is an n-tuple.

  3. Category of sets - Wikipedia

    en.wikipedia.org/wiki/Category_of_sets

    The product in this category is given by the cartesian product of sets. The coproduct is given by the disjoint union: given sets A i where i ranges over some index set I, we construct the coproduct as the union of A i ×{i} (the cartesian product with i serves to ensure that all the components stay disjoint).

  4. Product (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Product_(mathematics)

    In set theory, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) —where a ∈ A and b ∈ B. [5] The class of all things (of a given type) that have Cartesian products is called a Cartesian ...

  5. Direct product - Wikipedia

    en.wikipedia.org/wiki/Direct_product

    In the special case of the category of groups, a product always exists: the underlying set of is the Cartesian product of the underlying sets of the , the group operation is componentwise multiplication, and the (homo)morphism : is the projection sending each tuple to its th coordinate.

  6. Product topology - Wikipedia

    en.wikipedia.org/wiki/Product_topology

    The axiom of choice occurs again in the study of (topological) product spaces; for example, Tychonoff's theorem on compact sets is a more complex and subtle example of a statement that requires the axiom of choice and is equivalent to it in its most general formulation, [3] and shows why the product topology may be considered the more useful ...

  7. Total order - Wikipedia

    en.wikipedia.org/wiki/Total_order

    A set equipped with a total order is a totally ordered set; [5] the terms simply ordered set, [2] linearly ordered set, [3] [5] toset [6] and loset [7] [8] are also used. The term chain is sometimes defined as a synonym of totally ordered set , [ 5 ] but generally refers to a totally ordered subset of a given partially ordered set.

  8. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    A left absorbing element that is also a right absorbing element if called an absorbing element. Absorbing elements are also sometime called annihilating elements or zero elements. A universe set is an absorbing element of binary union .

  9. Coproduct - Wikipedia

    en.wikipedia.org/wiki/Coproduct

    The coproduct in the category of sets is simply the disjoint union with the maps i j being the inclusion maps.Unlike direct products, coproducts in other categories are not all obviously based on the notion for sets, because unions don't behave well with respect to preserving operations (e.g. the union of two groups need not be a group), and so coproducts in different categories can be ...