enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Infinite set - Wikipedia

    en.wikipedia.org/wiki/Infinite_set

    The power set of an infinite set is infinite. [3] Any superset of an infinite set is infinite. If an infinite set is partitioned into finitely many subsets, then at least one of them must be infinite. Any set which can be mapped onto an infinite set is infinite. The Cartesian product of an infinite set and a nonempty set is infinite. The ...

  3. Product measure - Wikipedia

    en.wikipedia.org/wiki/Product_measure

    Then, for the minimal product measure the measure of a set is the sum of the measures of its horizontal sections, while for the maximal product measure a set has measure infinity unless it is contained in the union of a countable number of sets of the form A×B, where either A has Lebesgue measure 0 or B is a single point. (In this case the ...

  4. Cartesian product - Wikipedia

    en.wikipedia.org/wiki/Cartesian_product

    If the Cartesian product rows × columns is taken, the cells of the table contain ordered pairs of the form (row value, column value). [4] One can similarly define the Cartesian product of n sets, also known as an n-fold Cartesian product, which can be represented by an n-dimensional array, where each element is an n-tuple.

  5. Empty set - Wikipedia

    en.wikipedia.org/wiki/Empty_set

    The number of elements of the empty set (i.e., its cardinality) is zero. The empty set is the only set with either of these properties. For any set A: The empty set is a subset of A; The union of A with the empty set is A; The intersection of A with the empty set is the empty set; The Cartesian product of A and the empty set is the empty set ...

  6. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    The relation of having the same cardinality is called equinumerosity, and this is an equivalence relation on the class of all sets. The equivalence class of a set A under this relation, then, consists of all those sets which have the same cardinality as A. There are two ways to define the "cardinality of a set":

  7. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    The aleph numbers differ from the infinity (∞) commonly found in algebra and calculus, in that the alephs measure the sizes of sets, while infinity is commonly defined either as an extreme limit of the real number line (applied to a function or sequence that "diverges to infinity" or "increases without bound"), or as an extreme point of the ...

  8. Product topology - Wikipedia

    en.wikipedia.org/wiki/Product_topology

    The axiom of choice occurs again in the study of (topological) product spaces; for example, Tychonoff's theorem on compact sets is a more complex and subtle example of a statement that requires the axiom of choice and is equivalent to it in its most general formulation, [3] and shows why the product topology may be considered the more useful ...

  9. Baire space (set theory) - Wikipedia

    en.wikipedia.org/wiki/Baire_space_(set_theory)

    An alternative basis for the product topology can be given in terms of trees. The basic open sets can be characterized as: If a finite sequence of natural numbers {w i : i < n} is selected, then the set of all infinite sequences of natural numbers that have value w i at position i for all i < n is a basic open set. Every open set is a countable ...