enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    A mass m attached to a spring of spring constant k exhibits simple harmonic motion in closed space. The equation for describing the period: = shows the period of oscillation is independent of the amplitude, though in practice the amplitude should be small. The above equation is also valid in the case when an additional constant force is being ...

  3. Elastic pendulum - Wikipedia

    en.wikipedia.org/wiki/Elastic_pendulum

    In physics and mathematics, in the area of dynamical systems, an elastic pendulum [1] [2] (also called spring pendulum [3] [4] or swinging spring) is a physical system where a piece of mass is connected to a spring so that the resulting motion contains elements of both a simple pendulum and a one-dimensional spring-mass system. [2]

  4. Natural frequency - Wikipedia

    en.wikipedia.org/wiki/Natural_frequency

    In a massspring system, with mass m and spring stiffness k, the natural angular frequency can be calculated as: = In an electrical network , ω is a natural angular frequency of a response function f ( t ) if the Laplace transform F ( s ) of f ( t ) includes the term Ke − st , where s = σ + ω i for a real σ , and K ≠ 0 is a constant ...

  5. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    When a spring is stretched or compressed by a mass, the spring develops a restoring force. Hooke's law gives the relationship of the force exerted by the spring when the spring is compressed or stretched a certain length: F ( t ) = − k x ( t ) , {\displaystyle F(t)=-kx(t),} where F is the force, k is the spring constant, and x is the ...

  6. Pendulum (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Pendulum_(mechanics)

    Since in the model there is no frictional energy loss, when given an initial displacement it swings back and forth with a constant amplitude. The model is based on the assumptions: The rod or cord is massless, inextensible and always remains under tension. The bob is a point mass. The motion occurs in two dimensions.

  7. Oscillation - Wikipedia

    en.wikipedia.org/wiki/Oscillation

    In the spring-mass system, oscillations occur because, at the static equilibrium displacement, the mass has kinetic energy which is converted into potential energy stored in the spring at the extremes of its path. The spring-mass system illustrates some common features of oscillation, namely the existence of an equilibrium and the presence of a ...

  8. Mechanical resonance - Wikipedia

    en.wikipedia.org/wiki/Mechanical_resonance

    where m is the mass and k is the spring constant. For a given mass, stiffening the system (increasing ) increases its natural frequency, which is a general characteristic of vibrating mechanical systems. A swing set is another simple example of a resonant system with which most people have practical experience. It is a form of pendulum.

  9. Wilberforce pendulum - Wikipedia

    en.wikipedia.org/wiki/Wilberforce_pendulum

    A Wilberforce pendulum can be designed by approximately equating the frequency of harmonic oscillations of the spring-mass oscillator f T, which is dependent on the spring constant k of the spring and the mass m of the system, and the frequency of the rotating oscillator f R, which is dependent on the moment of inertia I and the torsional ...