Search results
Results from the WOW.Com Content Network
Cellular respiration is a vital process that occurs in the cells of all [[plants and some bacteria ]]. [2] [better source needed] Respiration can be either aerobic, requiring oxygen, or anaerobic; some organisms can switch between aerobic and anaerobic respiration. [3] [better source needed]
The isotopic signature of C 3 plants shows higher degree of 13 C depletion than the C 4 plants, due to variation in fractionation of carbon isotopes in oxygenic photosynthesis across plant types. Specifically, C 3 plants do not have PEP carboxylase like C 4 plants, allowing them to only utilize ribulose-1,5-bisphosphate carboxylase (Rubisco) to ...
The terms aerobic respiration, anaerobic respiration and fermentation (substrate-level phosphorylation) do not refer to primary nutritional groups, but simply reflect the different use of possible electron acceptors in particular organisms, such as O 2 in aerobic respiration, or nitrate (NO − 3), sulfate (SO 2− 4) or fumarate in anaerobic ...
Ecosystem respiration is the production portion of carbon dioxide in an ecosystem's carbon flux, while photosynthesis typically accounts for the majority of the ecosystem's carbon consumption. [3] Carbon is cycled throughout the ecosystem as various factors continue to uptake or release the carbon in different circumstances.
Anaerobic respiration is done by aerobic organisms when there is not sufficient oxygen in a cell to undergo aerobic respiration as well as by cells called anaerobes that selectively perform anaerobic respiration even in the presence of oxygen. In anaerobic respiration, weak oxidants like sulfate and nitrate serve as oxidants in the place of ...
The reaction for the aerobic respiration is essentially the reverse of photosynthesis, except that now there is a large release of chemical energy which is stored in ATP molecules (up to 38 ATP molecules are formed from one molecule of glucose and 6 O 2 molecules). The simplified version of this reaction is: C 6 H 12 O 6 + 6 O 2 → 6 CO 2 + 6 H
Soil respiration without any additions of nutrients and substrates is called the basal soil respiration (BR). With the addition of nutrients (often nitrogen and phosphorus) and substrates (e.g. sugars), it is called the substrate-induced soil respiration (SIR). In both BR and SIR measurements, the moisture content can be adjusted with water.
The pineapple is an example of a CAM plant.. Crassulacean acid metabolism, also known as CAM photosynthesis, is a carbon fixation pathway that evolved in some plants as an adaptation to arid conditions [1] that allows a plant to photosynthesize during the day, but only exchange gases at night.