Search results
Results from the WOW.Com Content Network
In aerodynamics, the torques or moments acting on an airfoil moving through a fluid can be accounted for by the net lift and net drag applied at some point on the airfoil, and a separate net pitching moment about that point whose magnitude varies with the choice of where the lift is chosen to be applied.
Aerodynamics is also important in the prediction of forces and moments acting on sailing vessels. It is used in the design of mechanical components such as hard drive heads. Structural engineers resort to aerodynamics, and particularly aeroelasticity, when calculating wind loads in the design of large buildings, bridges, and wind turbines.
This diagram shows the gas-relative and shock-relative velocities used for the theoretical moving shock equations. To derive the theoretical equations for a moving shock, one may start by denoting the region in front of the shock as subscript 1, with the subscript 2 defining the region behind the shock.
The science of aerodynamics deals with the motion of air and the way that it interacts with objects in motion, such as an aircraft. The study of aerodynamics falls broadly into three areas: Incompressible flow occurs where the air simply moves to avoid objects, typically at subsonic speeds below that of sound (Mach 1).
Flight dynamics calculations are handled by computerized guidance systems aboard the vehicle; the status of the flight dynamics is monitored on the ground during powered maneuvers by a member of the flight controller team known in NASA's Human Spaceflight Center as the flight dynamics officer, or in the European Space Agency as the spacecraft ...
For fixed-wing aircraft, ground effect is the reduced aerodynamic drag that an aircraft's wings generate when they are close to a fixed surface. [1] During takeoff, ground effect can cause the aircraft to "float" while below the recommended climb speed.
The weight of the aircraft is the common factor that links all aspects of aircraft design such as aerodynamics, structure, and propulsion, all together. An aircraft's weight is derived from various factors such as empty weight, payload, useful load, etc. The various weights are used to then calculate the center of mass of the entire aircraft. [37]
The aerodynamics of the canard configuration are complex and require careful analysis. Rather than use the conventional tailplane configuration found on most aircraft, an aircraft designer may adopt the canard configuration to reduce the main wing loading, to better control the main wing airflow, or to increase the aircraft's maneuverability ...