enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    These factorizations work not only over the complex numbers, but also over any field, where either –1, 2 or –2 is a square. In a finite field , the product of two non-squares is a square; this implies that the polynomial x 4 + 1 , {\displaystyle x^{4}+1,} which is irreducible over the integers, is reducible modulo every prime number .

  3. Table of Gaussian integer factorizations - Wikipedia

    en.wikipedia.org/wiki/Table_of_Gaussian_Integer...

    The entries in the table resolve this ambiguity by the following convention: the factors are primes in the right complex half plane with absolute value of the real part larger than or equal to the absolute value of the imaginary part. The entries are sorted according to increasing norm x 2 + y 2 (sequence A001481 in the OEIS). The table is ...

  4. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    A general-purpose factoring algorithm, also known as a Category 2, Second Category, or Kraitchik family algorithm, [10] has a running time which depends solely on the size of the integer to be factored. This is the type of algorithm used to factor RSA numbers. Most general-purpose factoring algorithms are based on the congruence of squares method.

  5. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.

  6. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    Factorization depends on the base field. For example, the fundamental theorem of algebra, which states that every polynomial with complex coefficients has complex roots, implies that a polynomial with integer coefficients can be factored (with root-finding algorithms) into linear factors over the complex field C.

  7. Lenstra elliptic-curve factorization - Wikipedia

    en.wikipedia.org/wiki/Lenstra_elliptic-curve...

    However, the algorithm fails when p - 1 has large prime factors, as is the case for numbers containing strong primes, for example. ECM gets around this obstacle by considering the group of a random elliptic curve over the finite field Z p, rather than considering the multiplicative group of Z p which always has order p − 1.

  8. Gaussian integer - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integer

    The Gaussian integers are the set [1] [] = {+,}, =In other words, a Gaussian integer is a complex number such that its real and imaginary parts are both integers.Since the Gaussian integers are closed under addition and multiplication, they form a commutative ring, which is a subring of the field of complex numbers.

  9. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    If the approximate ratio of two factors (/) is known, then a rational number / can be picked near that value. N u v = c v ⋅ d u {\displaystyle Nuv=cv\cdot du} , and Fermat's method, applied to Nuv , will find the factors c v {\displaystyle cv} and d u {\displaystyle du} quickly.