Search results
Results from the WOW.Com Content Network
This formula distinguishes the complex number i from any real number, since the square of any (negative or positive) real number is always a non-negative real number. With this definition of multiplication and addition, familiar rules for the arithmetic of rational or real numbers continue to hold for complex numbers.
x is the argument of the complex number (angle between line to point and x-axis in polar form). The notation is less commonly used in mathematics than Euler's formula, e ix, which offers an even shorter notation for cos x + i sin x, but cis(x) is widely used as a name for this function in software libraries.
However, there are generalizations of this formula valid for other exponents. These can be used to give explicit expressions for the n th roots of unity, that is, complex numbers z such that z n = 1. Using the standard extensions of the sine and cosine functions to complex numbers, the formula is valid even when x is an arbitrary complex number.
In fact, the same proof shows that Euler's formula is even valid for all complex numbers x. A point in the complex plane can be represented by a complex number written in cartesian coordinates. Euler's formula provides a means of conversion between cartesian coordinates and polar coordinates. The polar form simplifies the mathematics when used ...
So, both z i + z j and z i z j are complex numbers. It is easy to check that every complex number has a complex square root, thus every complex polynomial of degree 2 has a complex root by the quadratic formula. It follows that z i and z j are complex numbers, since they are roots of the quadratic polynomial z 2 − (z i + z j)z + z i z j.
In probability theory and statistics, complex random variables are a generalization of real-valued random variables to complex numbers, i.e. the possible values a complex random variable may take are complex numbers. [1] Complex random variables can always be considered as pairs of real random variables: their real and imaginary parts ...
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}
This formula can be very useful in determining the residues for low-order poles. For higher-order poles, the calculations can become unmanageable, and series expansion is usually easier. For essential singularities, no such simple formula exists, and residues must usually be taken directly from series expansions.